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saspt is a Python tool for analyzing single particle tracking (SPT) experiments. It uses state arrays, a kind of variational
Bayesian framework that learns intelligible models given raw trajectories from an SPT experiment.

There are a lot of great SPT analysis tools out there. We found it useful to write saspt because:

• it is simple and flexible enough to accommodate a wide variety of underlying stochastic models;

• its outputs are familiar numpy and pandas objects;

• it imposes no prior beliefs on the number of dynamic states;

• it uses tried-and-true Bayesian methods (marginalization over nuisance parameters) to deal with measurement
error in a natural way.

I originally wrote saspt to deal with live cell protein tracking experiments. In the complex intracellular environment,
a protein can occupy a large and unknown number of molecular states with distinct dynamics. saspt provides a simple
way to measure the number, characteristics, and fractional occupations of these states. It is also “smart” enough to deal
with situations where there may not be discrete states.

If you want to jump right into working with saspt, see Quickstart. If you want a more detailed explanation of why
saspt exists, see Background. If you want to dig into the guts of the actual model and inference algorithm, see The
state array model.

(saspt stands for “state arrays for single particle tracking”.)

CONTENTS 1
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CHAPTER

ONE

WHAT DOES SASPT DO?

saspt takes a set of trajectories from a tracking experiment, and identifies a mixture model to explain them. It is
designed to work natively with numpy and pandas objects.
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CHAPTER

TWO

WHAT DOESN’T SASPT DO?

1. saspt doesn’t do tracking; it takes trajectories as input. (See: Q. Does saspt provide a way to do tracking?)

2. saspt doesn’t model transitions between states. For that purpose, we recommend the excellent vbSPT package.

3. saspt doesn’t check the quality of the input data.

4. saspt expects you to know the parameters for your imaging experiment, including pixel size, frame rate, and
focal depth.

Currently saspt only supports a small range of physical models. That may change as the package grows.

2.1 Install

saspt has only been tested with Python 3.

2.1.1 Option 1: install with pip

pip install saspt

2.1.2 Option 2: install from source

1. Clone the saspt repo:

git clone https://github.com/alecheckert/saspt.git
cd saspt

2. If you are using the conda package manager, you build and switch to the saspt_env conda environment with
all the necessary dependencies:

conda env create -f example_env.yaml
conda activate saspt_env

3. Install the saspt package:

pip install .

We recommend running the testing suite after installing:

pytest tests

5
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2.1.3 Dependencies

• numpy

• scipy

• dask

• pandas

• matplotlib

• tqdm (pip)

• seaborn

All dependencies are available via conda using either the defaults or conda-forge channels (example environment
spec).

2.2 Quickstart

Note: Before running, see Install for installation instructions.

Note: Want more code and less prose? Check out examples.py, a simple executable that demos most of stuff in this
Quickstart.

This is a quick guide to getting started with saspt. It assumes you’re familiar with single particle tracking (SPT), have
seen mixture models before, and have installed saspt. For a more detailed explanation of saspt’s purpose, model,
and range of applicability, see Background.

2.2.1 Run state arrays on a single SPT experiment

We’ll use the sample set of trajectories that comes with saspt:

>>> import pandas as pd, numpy as np, matplotlib.pyplot as plt
>>> from saspt import sample_detections, StateArray, RBME
>>> detections = sample_detections()

The expected format for input trajectories is described under Note on input format. Importantly, the units for the XY
coordinates are in pixels, not microns.

Next, we’ll set the parameters for a state array that uses mixtures of regular Brownian motions with localization error
(RBMEs):

>>> settings = dict(
... likelihood_type = RBME,
... pixel_size_um = 0.122,
... frame_interval = 0.01,
... focal_depth = 0.7,
... progress_bar = True,
... )

Only three parameters are actually required:

6 Chapter 2. What doesn’t saSPT do?
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• likelihood_type: the type of physical model to use

• pixel_size_um: size of camera pixels after magnification in microns

• frame_interval: time between frames in seconds

Additionally, we’ve set the focal_depth, which accounts for the finite focal depth of high-NA objectives used for SPT
experiments, and progress_bar, which shows progress during inference. A full list of parameters and their meaning
is described at StateArrayParameters.

Construct a StateArray with these settings:

>>> SA = StateArray.from_detections(detections, **settings)

If we run print(SA), we get

StateArray:
likelihood_type : rbme
n_tracks : 1130
n_jumps : 3933
parameter_names : ('diff_coef', 'loc_error')
shape : (100, 36)

This means that this state array infers occupations on a 2D parameter grid of diffusion coefficient (diff_coef) and
localization error (loc_error), using 1130 trajectories. The shape of the parameter grid is (100, 36), meaning that
the grid uses 100 distinct diffusion coefficients and 36 distinct localization errors (the default). These define the range
of physical models that can be described with this state array. We can get the values of these parameters using the
StateArray.parameter_values attribute:

>>> diff_coefs, loc_errors = SA.parameter_values
>>> print(diff_coefs.shape)
(100,)
>>> print(loc_errors.shape)
(36,)

The StateArray object provides two estimates of the state occupations at each point on this parameter grid:

• The “naive” estimate, a quick and dirty estimate from the raw likelihood function

• The “posterior” estimate, which uses the full state array model

The posterior estimate is more precise than the naive estimate, but also requires more trajectories and time. The more
trajectories are present in the input, the more precise the posterior estimate becomes.

The StateArray object provides a built-in plot to compare the naive and posterior estimates:

>>> SA.plot_occupations("rbme_occupations.png")

The plot will look something like this:

2.2. Quickstart 7
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The bottom row shows the posterior occupations marginalized on diffusion coefficient. This is a simple and powerful
mechanism to account for the influence of localization error.

In this case, the state array identified a dominant diffusive state with a diffusion coefficient of about 5 𝜇m2/sec. We can
also see a less-populated state between about 1 and 3 𝜇m2/sec, and some very slow particles with diffusion coefficients
in the range 0.01 to 0.1 𝜇m2/sec.

We can retrieve the raw arrays used in this plot via the naive_occs and posterior_occs attributes. Both are arrays
defined on the same grid of diffusion coefficient vs. localization error:

>>> naive_occs = SA.naive_occs
>>> posterior_occs = SA.posterior_occs
>>> print(naive_occs.shape)
(100, 36)
>>> print(posterior_occs.shape)
(100, 36)

Along with the state occupations, the StateArray object also infers the probabilities of each trajectory-state assign-
ment. As with the state occupations, the trajectory-state assignment probabilities have both “naive” and “posterior”
versions that we can compare:

>>> naive_assignment_probabilities = SA.naive_assignment_probabilities
>>> posterior_assignment_probabilities = SA.posterior_assignment_probabilities
>>> print(naive_assignment_probabilities.shape)
(100, 36, 1130)
>>> print(posterior_assignment_probabilities.shape)
(100, 36, 1130)

Notice that these arrays have one element per point in our 100-by-36 parameter grid and per trajectory. For example,
the marginal probability that trajectory 100 has each of the 100 diffusion coefficients is:

>>> posterior_assignment_probabilities[:,:,100].sum(axis=1)

StateArray provides a plot to compare the naive and posterior assignment probabilities across all trajectories:

8 Chapter 2. What doesn’t saSPT do?
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>>> SA.plot_assignment_probabilities('rbme_assignment_probabilities.png')

Each column in this plot represents a single trajectory, and the rows represent the probability of the trajectories having
a particular diffusion coefficient. (The trajectories are sorted by their posterior mean diffusion coefficient.)

There are also a couple of related plots (not illustrated here):

• saspt.StateArray.plot_temporal_assignment_probabilities(): shows the assignment proba-
bilities as a function of the frame(s) in which the respective trajectories were found

• saspt.StateArray.plot_spatial_assignment_probabilities(): shows the assignment proba-
bilities as a function of the spatial location of the component detections

Finally, StateArray provides the naive and posterior state occupations as a pandas.DataFrame:

>>> occupations = SA.occupations_dataframe
>>> print(occupations)

diff_coef loc_error naive_occupation mean_posterior_occupation
0 0.01 0.000 0.000017 0.000009
1 0.01 0.002 0.000017 0.000008
2 0.01 0.004 0.000016 0.000008
... ... ... ... ...
3597 100.00 0.066 0.000042 0.000014
3598 100.00 0.068 0.000041 0.000014
3599 100.00 0.070 0.000041 0.000014

[3600 rows x 4 columns]

Each row corresponds to a single point on the parameter grid. For instance, if we wanted to get the probability that a
particle has a diffusion coefficient less than 0.1 𝜇m2/sec, we could do:

>>> selected = occupations['diff_coef'] < 0.1
>>> naive_estimate = occupations.loc[selected, 'naive_occupation'].sum()
>>> posterior_estimate = occupations.loc[selected, 'mean_posterior_occupation'].sum()
>>> print(naive_estimate)
0.24171198737935867
>>> print(posterior_estimate)
0.2779671727562628

In this case, the naive and posterior estimates are quite similar.

2.2. Quickstart 9
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2.2.2 Run state arrays on a SPT dataset

Often we want to run state arrays on more than one SPT experiment and compare the output between experimental
conditions. The StateArrayDataset object is intended to be a simple solution that provides:

• methods to parallelize state array inference across multiple SPT experiments

• outputs and visualizations to help compare between experimental conditions

In this example, we’ll use an example from the saspt repo. You can follow along by cloning the saspt repo and
navigating to the examples subdirectory:

$ git clone https://github.com/alecheckert/saspt.git
$ cd saspt/examples
$ ls -1
examples.py
experiment_conditions.csv
u2os_ht_nls_7.48ms
u2os_rara_ht_7.48ms

The examples subdirectory contains a small SPT dataset where two proteins have been tracked:

• HT-NLS: HaloTag (HT) fused to a nuclear localization signal (NLS), labeled with the photoactivatable
fluorescent dye PA-JFX549

• RARA-HT: retinoic acid receptor 𝛼 (RARA) fused to HaloTag (HT), labeled with the photoactivatable fluo-
rescent dye PA-JFX549

Each protein has 11 SPT experiments, stored as CSV files in the examples/u2os_ht_nls_7.48ms and examples/
u2os_rara_ht_7.48ms subdirectories. We also have a registry file (experiment_conditions.csv) that contains
the assignment of each file to an experimental condition:

>>> paths = pd.read_csv('experiment_conditions.csv')

In this case, we have two columns: filepath encodes the path to the CSV corresponding to each SPT experiment,
while condition encodes the experimental condition. (It doesn’t actually matter what these are named as long as they
match the path_col and condition_col parameters below.)

>>> print(paths)
filepath condition

0 u2os_ht_nls_7.48ms/region_0_7ms_trajs.csv HaloTag-NLS
1 u2os_ht_nls_7.48ms/region_10_7ms_trajs.csv HaloTag-NLS
2 u2os_ht_nls_7.48ms/region_1_7ms_trajs.csv HaloTag-NLS
.. ... ...
19 u2os_rara_ht_7.48ms/region_7_7ms_trajs.csv RARA-HaloTag
20 u2os_rara_ht_7.48ms/region_8_7ms_trajs.csv RARA-HaloTag
21 u2os_rara_ht_7.48ms/region_9_7ms_trajs.csv RARA-HaloTag

[22 rows x 2 columns]

Specify some parameters related to this analysis:

>>> settings = dict(
... likelihood_type = RBME,
... pixel_size_um = 0.16,
... frame_interval = 0.00748,
... focal_depth = 0.7,

(continues on next page)
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(continued from previous page)

... path_col = 'filepath',

... condition_col = 'condition',

... progress_bar = True,

... num_workers = 6,

... )

Warning: The num_workers attribute specifies the number of parallel processes to use when running inference.
Don’t set this higher than the number of CPUs on your computer, or you’re likely to suffer performance hits.

Create a StateArrayDataset with these settings:

>>> from saspt import StateArrayDataset
>>> SAD = StateArrayDataset.from_kwargs(paths, **settings)

If you do print(SAD), you’ll get some basic info on this dataset:

>>> print(SAD)
StateArrayDataset:
likelihood_type : rbme
shape : (100, 36)
n_files : 22
path_col : filepath
condition_col : condition
conditions : ['HaloTag-NLS' 'RARA-HaloTag']

We can get more detailed information on these experiments (such as the detection density, mean trajectory length, etc.)
by accessing the raw_track_statistics attribute:

>>> stats = SAD.raw_track_statistics
>>> print(stats)

n_tracks n_jumps ... filepath condition
0 2387 1520 ... u2os_ht_nls_7.48ms/region_0_7ms_trajs.csv HaloTag-NLS
1 4966 5341 ... u2os_ht_nls_7.48ms/region_10_7ms_trajs.csv HaloTag-NLS
2 3294 2584 ... u2os_ht_nls_7.48ms/region_1_7ms_trajs.csv HaloTag-NLS
.. ... ... ... ... ...
19 5418 13129 ... u2os_rara_ht_7.48ms/region_7_7ms_trajs.csv RARA-HaloTag
20 9814 26323 ... u2os_rara_ht_7.48ms/region_8_7ms_trajs.csv RARA-HaloTag
21 7530 18978 ... u2os_rara_ht_7.48ms/region_9_7ms_trajs.csv RARA-HaloTag

[22 rows x 13 columns]
>>> print(stats.columns)
Index(['n_tracks', 'n_jumps', 'n_detections', 'mean_track_length',

'max_track_length', 'fraction_singlets', 'fraction_unassigned',
'mean_jumps_per_track', 'mean_detections_per_frame',
'max_detections_per_frame', 'fraction_of_frames_with_detections',
'filepath', 'condition'],

dtype='object')

To get the naive and posterior state occupations for each file in this dataset:

2.2. Quickstart 11
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>>> marginal_naive_occs = SAD.marginal_naive_occs
>>> marginal_posterior_occs = SAD.marginal_posterior_occs
>>> print(marginal_naive_occs.shape)
>>> print(marginal_posterior_occs.shape)

Note: It can take a few minutes to compute the posterior occupations for a dataset of this size. If you need a quick
estimate for a test, try reducing the max_iter or sample_size parameters.

These occupations are “marginal” in the sense that they’ve been marginalized onto the parameter of interest in
most SPT experiments: the diffusion coefficient. (You can get the original, unmarginalized occupations via the
StateArrayDataset.posterior_occs and StateArrayDataset.naive_occs attributes.)

The same information is also provided as a pandas.DataFrame:

>>> occupations = SAD.marginal_posterior_occs_dataframe

For example, imagine we want to calculate the posterior probability that a particle had a diffusion coefficient less than
0.5 𝜇m2/sec for each file. We could do this by taking

>>> print(occupations.loc[occupations['diff_coef'] < 0.5].groupby(
... 'filepath')['mean_posterior_occupation'].sum())
filepath
u2os_ht_nls_7.48ms/region_0_7ms_trajs.csv 0.188782
u2os_ht_nls_7.48ms/region_10_7ms_trajs.csv 0.103510
u2os_ht_nls_7.48ms/region_1_7ms_trajs.csv 0.091148
...
u2os_rara_ht_7.48ms/region_7_7ms_trajs.csv 0.579444
u2os_rara_ht_7.48ms/region_8_7ms_trajs.csv 0.553111
u2os_rara_ht_7.48ms/region_9_7ms_trajs.csv 0.650187
Name: posterior_occupation, dtype: float64

The StateArrayDataset provides a few plots to visualize these occupations:

>>> SAD.posterior_heat_map('posterior_heat_map.png')

Notice that the two kinds of proteins have different diffusive profiles: HaloTag-NLS occupies a narrow range of diffusion
coefficients centered around 10 𝜇m2/sec, while RARA-HaloTag has a much broader range of free diffusion coefficients

12 Chapter 2. What doesn’t saSPT do?
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with a substantial immobile fraction (showing up at the lower end of the diffusion coefficient range).

The heat map plot is useful to judge how consistent the result is across SPT experiments in the same condition. We can
also compare the variability using an alternative line plot representation:

>>> SAD.posterior_line_plot('posterior_line_plot.png')

>>> SAD.naive_heat_map('naive_heat_map.png')

Notice that the information provided by the naive occupations is qualitatively similar but less precise than the posterior
occupations.

>>> SAD.naive_line_plot('naive_line_plot.png')

2.2. Quickstart 13
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Additionally, rather than performing state array inference on each file individually, we can aggregate trajectories across
all files matching a particular condition:

>>> posterior_occs, condition_names = SAD.infer_posterior_by_condition('condition')
>>> print(posterior_occs.shape)
(2, 100)
>>> print(condition_names)
['HaloTag-NLS', 'RARA-HaloTag']

The results are unnormalized (they reflect the total number of jumps in each condition). We can normalize and plot the
results by doing:

>>> from saspt import normalize_2d
>>> posterior_occs = normalize_2d(posterior_occs, axis=1)
>>> diff_coefs = SAD.likelihood.diff_coefs
>>> for c in range(posterior_occs.shape[0]):
... plt.plot(diff_coefs, posterior_occs[c,:], label=condition_names[c])
>>> plt.xscale('log')
>>> plt.xlabel('Diff. coef. ($\mu$m$^{2}$ s$^{-1}$)')
>>> plt.ylabel('Mean posterior occupation')
>>> plt.ylim((0, plt.ylim()[1]))
>>> plt.legend()
>>> plt.show()

14 Chapter 2. What doesn’t saSPT do?
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The more trajectories we aggregate, the better our state occupation estimates become. saspt performs best when using
large datasets with tens of thousands of trajectories per condition.

2.3 Background

We developed saspt to analyze a kind of high-speed microscopy called live cell protein tracking. These experiments
rely on fast, sensitive cameras to recover the paths of fluorescently labeled protein molecules inside living cells.

The movie below is an example of a kind of protein tracking called SPT-PALM (Manley et al. 2013). The microscope
in this experiment is focused on a cell, but nearly all of the cell is invisible. The only part that we can see are bright
little dots, each of which is a dye molecule attached to a kind of protein called NPM1-HaloTag. Only a few of these
dye molecules are active at any given time. This keeps their density low enough to track their paths through the cell.

Fig. 1: A short segment taken from an SPT-PALM movie in live U2OS osteosarcoma cells. Each bright dot is a single
dye molecule covalently linked to an NPM1-HaloTag protein. The dye in this experiment is PA-JFX549, generously
provided by the lab of Luke Lavis.

A quick glance reveals that not all molecules behave the same way. Some are nearly stationary; others wander rapidly
around the cell. In saspt, we refer to these categories of behavior as states. In protein tracking, a major goal when
applying tracking to a new protein target is to figure out

1. the number of distinct states the protein can occupy;

2. the characteristics of each state (state parameters);

3. the fraction of molecules in each state (state occupations).

Together, we refer to this information as a model. The goal of saspt is to recover a model given some observed
trajectories. This specific kind of model, where we have a collection of observations from different states, is called a
mixture model.

It’s important to keep in mind that similar states can arise in distinct ways. For example, a slow-moving state might
indicate that the protein is interacting with an immobile scaffold (like the cell membrane or DNA), or that it’s simply
too big to diffuse quickly in the crowded environment of the cell. Good SPT studies use biochemical perturbations -
such as mutations or domain deletions - to tease apart the molecular origins of each state.

2.3. Background 15
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Fig. 2: Schematic of the workflow for a live cell protein tracking experiment. A protein target is conjugated to a
bright fluorescent label (in this case, a fluorescent dye molecule via a HaloTag domain). This label is then used to
track the protein around inside the cell (center), producing a large set of short trajectories (right). A common goal
in postprocessing is to use the set of trajectories to learn about the dynamics, or modes of mobility, exhibited by the
protein target.

2.3.1 Model fitting vs. model selection

Approaches to analyze protein tracking data fall into one of two categories:

1. Model fitting: we start with a known physical model. The goal is to fit the coefficients of that model given
the observed data. Example: given a model with two Brownian states, recover the occupations and diffusion
coefficients of each state.

2. Model selection: we start with some uncertainty in the physical model (often, but not always, because we don’t
know the number of states). The goal of inference is to recover both the model and its coefficients.

Model selection is harder than model fitting. Some approaches, such as maximum likelihood inference, tend to exploit
every degree of freedom we afford them in the model. As a result, when we increase model complexity (by adding
new states, for instance), we get better (higher likelihood) models. But this is mostly because they explain noise better,
rather than intrinsic properties of the system. Such models generalize poorly to new data.

That’s not very useful. Ideally we’d like to find the simplest model required to explain the observed data. Simple
models often yield more intelligible insights into underlying behavior and generalize more cleanly to new data.

A key insight of early research into Bayesian methods was that such methods “pruned away” superfluous complexity in
a model, providing a natural mechanism for model selection. For instance, when provided with a mixture model with a
large number of states, Bayesian inference tends to drive the most state occupations to zero. In the context of machine
learning, this property is sometimes referred to as automatic relevance determination (ARD). A more familiar analogy
may be Occam’s razor: when two possible models can explain the data equally well, we favor the simpler one.

16 Chapter 2. What doesn’t saSPT do?



saspt, Release 1.0

2.3.2 State arrays

The state array is the model that underlies the saspt package. It takes trajectories from a protein tracking experiment
and identifies a generative model for those trajectories, including the number of distinct states, their characteristics, and
their occupations.

To do so, it relies on a variational Bayesian inference routine that “prunes away” superfluous states on a large grid
of possibilities, leading to minimal models that describe observed data. It is particularly designed to deal with two
limitations of protein tracking datasets:

1. Trajectories are often very short, due to bleaching and defocalization. (See: Q. What is defocalization?)

2. Apparent motion in tracking experiments can come from localization error, imprecision in the subpixel estimate
of each emitter’s position.

2.4 The state array model

This section describes the underlying state array model used by saspt. State arrays are just Bayesian mixture models
with large number of mixture components (“states”) that are situated on a fixed grid of parameters. They rely on a
variational Bayesian inference routine that prunes away superfluous states, selecting minimal models to describe ob-
served SPT datasets. What makes them work is similar to what makes nonparametric Bayesian methods work (namely,
automatic relevance determination). But their structure leads to a much more efficient and scalable inference routine.

Fig. 3: Graphical model comparison of finite state mixtures, Dirichlet process mixtures, and state arrays. Open circles
indicate unobserved variables, closed circles/dots indicate observed variables.
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2.4.1 Likelihood functions

A physical model for the motion of particles in an SPT experiment is usually expressed in the form of a probability
distribution 𝑝(𝑋|𝜃), where 𝑋 is the observed path of the trajectory and 𝜃 represents the parameters of the motion.
Intuitively, this function tells us how likely we are to see a specific trajectory given some kind of physical model. We
refer to the function 𝑝(𝑋|𝜃) as a likelihood function.

As an example, take the case of regular Brownian motion (RBM), a model with a single parameter that characterizes
each trajectory (the diffusion coefficient 𝐷). (For those familiar, this is equivalent to a scaled Wiener process.) Its
likelihood function is

𝑝(𝑋|𝐷) =

𝑛∏︁
𝑘=1

exp
(︀
−∆𝑟2𝑘/4𝐷∆𝑡

)︀
(4𝜋𝐷∆𝑡)

𝑑
2

where ∆𝑟𝑘 is the radial displacement of the 𝑘th jump in the trajectory, ∆𝑡 is the measurement interval, 𝑑 is the spatial
dimension, and 𝑛 is the total number of jumps in the trajectory.

A common approach to recover the parameters of the motion is simply to find the parameters that maximize 𝑝(𝑋|𝜃),
holding 𝑋 constant at its observed value. In the case of RBM, this maximum likelihood estimate has a closed form -
the mean squared displacement, or “MSD”:

�̂�mle =

𝑛∑︀
𝑘=1

∆𝑟2𝑘

2𝑑𝑛∆𝑡

While this works well enough for one pure Brownian trajectory, this approach has several shortcomings when we try
to generalize it:

1. Closed-form maximum likelihood solutions only exist for the simplest physical models, like RBM. Even introduc-
ing measurement error, a ubiquitous feature of SPT-PALM experiments, is sufficient to eliminate any closed-form
solution.

2. Maximum likelihood does not provide any measure of confidence in the result. This becomes problematic for
complex models with multiple parameters, where a large range of parameter vectors may give near-equivalent
results. This means that even when our maximum likelihood estimators work perfectly, they are highly instable
from one experiment to the next.

An alternative to maximum likelihood inference is to treat both X and 𝜃 as random variables and evaluate the condi-
tional probability 𝑝(𝜃|X). For instance, we can estimate 𝜃 by taking the mean of 𝑝(𝜃|X). This is the Bayesian approach
(and the one we use in saspt).

2.4.2 Mixture models

Suppose we observe 𝑁 trajectories in an SPT experiment, which we represent as a vector X = (𝑋1, ..., 𝑋𝑁 ). If all of
the trajectories can be described by the same physical model, then the probability of seeing a set of trajectories X is
just the product of the distributions over each 𝑋𝑖:

𝑝(X|𝜃) =

𝑁∏︁
𝑖=1

𝑝(𝑋𝑖|𝜃)

In reality, this only describes the simplest situations because it assumes that the same physical model governs all of
the trajectories. Most of the time we cannot assume that all trajectories originate from particles in the same physical
state. Indeed, heterogeneity in a particle’s dynamical states is often one of the things we hope to learn from an SPT
experiment.

To deal with this complexity, we construct mixture models, which are exactly what they sound like: mixtures of particles
in different states. Each state is governed by a different physical model. Parameters of interest include the model
parameters characterizing each state, as well as the fraction of particles in each state (the state’s occupation).
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We formalize mixture models in the following way. Suppose we have a mixture of 𝐾 states. Instead of a single vector
of state parameters, we’ll have one vector for each state: 𝜃 = (𝜃1, ...,𝜃𝐾). And in addition to the state parameters,
we’ll specify a set of occupations 𝜏 = (𝜏1, ..., 𝜏𝐾) that describe the fraction of particles in each state. (These are also
called mixing probabilities.)

With this formalism, the probability of seeing a single trajectory in state 𝑗 is 𝜏𝑗 . The probability of seeing two trajec-
tories in that state is 𝜏2𝑗 . And the probability of seeing 𝑛1 trajectories in the first state, 𝑛2 in the second state, and so on
is

𝜏𝑛1
1 𝜏𝑛2

2 · · · 𝜏𝑛𝐾

𝐾

Of course, usually we don’t know which state a given trajectory comes from. The more states we have, the more
uncertainty there is.

The way to handle this in a Bayesian framework is to incorporate the uncertainty explicitly into the model by introducing
a new random variable Z that we’ll refer to as the assignment matrix. Z is a 𝑁 ×𝐾 matrix composed solely of 0s and
1s such that

𝑍𝑖𝑗 =

{︃
1 if trajectory 𝑖 comes from a particle in state 𝑗
0 otherwise

Notice that each row of Z contains a single 1 and the rest of the elements are 0. As an example, imagine we have three
states and two trajectories, with the first trajectory assigned to state 1 and the second assigned to state 3. Then the
assignment matrix would be

Z =

[︂
1 0 0
0 0 1

]︂
Given a particular state occupation vector 𝜏 , the probability of seeing a particular set of assignments Z is

𝑝(Z|𝜏 ) =

𝐾∏︁
𝑗=1

𝑁∏︁
𝑖=1

𝜏
𝑍𝑖𝑗

𝑗

Notice that the probability and expected value for any given 𝑍𝑖𝑗 are the same:

𝑝(𝑍𝑖𝑗 |𝜏 ) = E [𝑍𝑖𝑗 |𝜏 ] = 𝜏𝑗

To review, we have four parameters that describe the mixture model:

• The state occupations 𝜏 , which describe the fraction of particles in each state;

• The state parameters 𝜃, which describe the type of motion produced by particles in each state;

• The assignment matrix Z, which describes the underlying state for each observed trajectory;

• The observed trajectories X

Bayesian mixture models

Of these four parameters, we only observe the trajectories X in an SPT experiment. The Bayesian approach is to infer
the conditional distribution

𝑝(Z, 𝜏 ,𝜃|X)

Using Bayes’ theorem, we can rewrite this as

𝑝(Z, 𝜏 ,𝜃|X) ∝ 𝑝(X|Z, 𝜏 ,𝜃)𝑝(Z, 𝜏 ,𝜃)
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In order to proceed with this approach, it is necessary to specify the form of the last term, the prior distribution.
Actually, since Z only depends on 𝜏 and not 𝜃, we can factor the prior as

𝑝(Z, 𝜏 ,𝜃) = 𝑝(Z|𝜏 )𝑝(𝜏 )𝑝(𝜃)

We already saw the form of 𝑝(Z|𝜏 ) earlier. 𝑝(𝜃) is usually chosen so that it is conjugate to the likelihood function (and,
as we will see, it is irrelevant for state arrays). For the prior 𝑝(𝜏 ), we choose a Dirichlet distribution with parameter
𝛼0 = (𝛼0, ..., 𝛼0) ∈ R𝐾 :

𝜏 ∼ Dirichlet (𝛼0) = 𝑝(𝜏 ) =
1

𝐵(𝛼0)

𝐾∏︁
𝑗=1

𝜏𝛼0−1
𝑗

Each draw from this distribution is a possible set of state occupations 𝜏 , with the mean of these draws being a uniform
distribution ( 1

𝐾 , ...,
1
𝐾 ). The variability of these draws about their mean is governed by 𝛼0, with high values of 𝛼0

producing distributions that are closer to a uniform distribution. (𝛼0 is known as the concentration parameter.)

2.4.3 Infinite mixture models and ARD

There are many approaches to estimate the posterior distribution 𝑝(Z, 𝜏 ,𝜃|Z), both numerical (Markov chain Monte
Carlo) and approximative (variational Bayes with a factorable candidate posterior).

However, a fundamental problem is the choice of 𝐾, the number of states. Nearly everything depends on it.

Nonparametric Bayesian methods developed in the 1970s through 1990s proceeded on the realization that, as𝐾 → ∞,
the number of states with nonzero occupation in the posterior distribution approached a finite number. In effect, the
these models “pruned” away superfluous features, leaving only the minimal models required to explain observed data.
(In the context of machine learning, this property of Bayesian inference is called automatic relevance determination
(ARD).)

These models replaced the separate priors 𝑝(𝜏 ) and 𝑝(𝜃) with a single prior 𝐻(𝜃) defined on the space of all possible
parameters Θ. The models are known as Dirichlet process mixture models (DPMMs) because the priors are a kind
of probability distribution called Dirichlet processes (essentially the infinite-dimensional version of a regular Dirichlet
distribution).

In practice, however, such models are unwieldy. As MCMC methods, they are extremely computationally costly. This
is particularly true for high-dimensional parameter vectors 𝜃, for which inference on any kind of practical timescale
is basically impossible. So while they solve the problem of choosing 𝐾, they introduce the equally dire problem of
impractical runtimes.

2.4.4 State arrays

State arrays are a finite-state approximation of DPMMs. Instead of an infinite set of states, we choose a high but
finite 𝐾 with state parameters 𝜃𝑗 that are situated on a fixed “parameter grid”. Then, we rely mostly on the automatic
relevance determination property of variational Bayesian inference to prune away the superfluous states. This leaves
minimal models to describe observed trajectories. Because the states are chosen with fixed parameters, they only require
that we evaluate the likelihood function once, at the beginning of inference. This shaves off an enormous amount of
computational time relative to DPMMs.

In this section, we describe state arrays, landing at the actual algorithm for posterior inference used in saspt.

We choose a large set of 𝐾 different states with fixed state parameters 𝜃𝑗 that are situated on a grid. Because the state
parameters are fixed, the values of the likelihood function are constant and can be represented as a 𝑁 ×𝐾 matrix, R:

𝑅𝑖𝑗 = 𝑓(𝑋𝑖|𝑍𝑖𝑗 = 1,𝜃𝑗)
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The total probability function for the mixture model is then

𝑝(X,Z, 𝜏 ) = 𝑝(X|Z)𝑝(Z|𝜏 )𝑝(𝜏 )

where

𝑝(X|Z) =

𝑁∏︁
𝑖=1

𝐾∏︁
𝑗=1

𝑅
𝑍𝑖𝑗

𝑖𝑗

𝑝(Z|𝜏 ) =

𝑁∏︁
𝑖=1

𝐾∏︁
𝑗=1

𝜏
𝑍𝑖𝑗

𝑗

𝑝(𝜏 ) = Dirichlet(𝛼0, ..., 𝛼0)

Following a variational approach, we seek an approximation to the posterior 𝑞(Z, 𝜏 ) ≈ 𝑝(Z, 𝜏 |X) that maximizes the
variational lower bound

𝐿[𝑞] =
∑︁
Z

∫︁
𝜏

𝑞(Z, 𝜏 ) log

[︂
𝑝(X,Z, 𝜏 )

𝑞(Z, 𝜏 )

]︂
𝑑𝜏

Under the assumption that 𝑞 factors as 𝑞(Z, 𝜏 ) = 𝑞(Z)𝑞(𝜏 ), this criterion can be achieved via an expectation-
maximization routine: alternately evaluating the two equations

log 𝑞(Z) = E𝜏∼𝑞(𝜏 ) [log 𝑝(X,Z, 𝜏 )] + constant
log 𝑞(𝜏 ) = EZ∼𝑞(Z) [log 𝑝(X,Z, 𝜏 )] + constant

The constants are chosen so that the respective factors 𝑞(Z) or 𝑞(𝜏 ) are normalized. These expectations are just
shorthand for

E𝜏∼𝑞(𝜏 ) [log 𝑝(X,Z, 𝜏 )] =

∫︁
log 𝑝(X,Z, 𝜏 )𝑞(𝜏 ) 𝑑𝜏

EZ∼𝑞(Z) [log 𝑝(X,Z, 𝜏 )] =
∑︁
Z

log 𝑝(X,Z, 𝜏 )𝑞(Z)

Evaluating the first of these factors (and ignoring terms that don’t directly depend on 𝜏 ), we have

log 𝑞(𝜏 ) =

𝐾∑︁
𝑗=1

(︃
𝛼0 − 1 +

𝑁∑︁
𝑖=1

E [𝑍𝑖𝑗 ]

)︃
log 𝜏𝑗 + constant

From this, we can see that 𝑞(𝜏 ) is a Dirichlet distribution:

𝑞(𝜏 ) = Dirichlet

(︃
𝛼0 +

𝑁∑︁
𝑖=1

E [𝑍𝑖,0] , ..., 𝛼0 +

𝑁∑︁
𝑖=1

E [𝑍𝑖,𝐾 ]

)︃

The distribution “counts” in terms of trajectories: each trajectory contributes one count (in the form of 𝑍𝑖) to the
posterior. This is not ideal: because SPT-PALM microscopes normally have a short focal depth due to their high nu-
merical aperture, fast-moving particles contribute many short trajectories to the posterior while slow-moving particles
contribute a few long trajectories. As a result, if we count by trajectories, we introduce strong state biases into the
posterior. (This is exactly the reason why the popular MSD histogram method, which also “counts by trajectories”,
affords such inaccurate measurements of state occupations in realistic simulations of SPT-PALM experiments.)

A better way is to count the contributions to each state by jumps rather than trajectories. Because fast-moving and slow-
moving states with equal occupation contribute the same number of detections within the focal volume, they contribute
close to the same number of jumps (modulo the increased fraction of jumps from the fast-moving particle that “land”
outside the focal volume).
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Modifying this factor to count by jumps rather than trajectories, we have

𝑞(𝜏 ) = Dirichlet (𝛼0 + 𝛼1, ..., 𝛼0 + 𝛼𝐾)

𝛼𝑗 =

𝑁∑︁
𝑖=1

𝑛𝑖E [𝑍𝑖𝑗 ]

where 𝑛𝑖 is the number of jumps observed for trajectory 𝑖.

Next, we evaluate 𝑞(Z):

log 𝑞(Z) =

𝐾∑︁
𝑗=1

𝑁∑︁
𝑖=1

(log𝑅𝑖𝑗 + 𝜓(𝛼0 + 𝛼𝑗))𝑍𝑖𝑗 + const

where we have used the result that if 𝜏 ∼ Dirichlet (𝑎), then E [𝜏𝑗 ] = 𝜓(𝑎𝑗) − 𝜓(𝑎1 + ... + 𝑎𝐾), where 𝜓 is the
digamma function.

Normalizing over each trajectory 𝑖, we have

𝑞(Z) =

𝑁∏︁
𝑖=1

𝐾∏︁
𝑗=1

𝑟
𝑍𝑖𝑗

𝑖𝑗

𝑟𝑖𝑗 =
𝑅𝑖𝑗𝑒

𝜓(𝜏𝑗)

𝐾∑︀
𝑘=1

𝑅𝑖𝑘𝑒𝜓(𝜏𝑘)

Under this distribution, we have

EZ∼𝑞(Z) [𝑍𝑖𝑗 ] = 𝑟𝑖𝑗

To summarize, the joint posterior over Z and 𝜏 is

𝑞(Z) =

𝑁∏︁
𝑖=1

𝐾∏︁
𝑗=1

𝑟
𝑍𝑖𝑗

𝑖𝑗

𝑞(𝜏 ) = Dirichlet (𝛼0 + 𝛼1, ..., 𝛼0 + 𝛼𝐾)

𝑟𝑖𝑗 =
𝑅𝑖𝑗𝑒

𝜓(𝜏𝑗)

𝐾∑︀
𝑘=1

𝑅𝑖𝑘𝑒𝜓(𝜏𝑘)

𝛼𝑗 =

𝑁∑︁
𝑖=1

𝑛𝑖𝑟𝑖𝑗

The two factors of 𝑞 are completely specified by the factors r and 𝜏 . The algorithm for refining these factors is:

• Evaluate the likelihood function for each trajectory-state pairing: 𝑅𝑖𝑗 = 𝑓(𝑋𝑖|𝜃𝑗).

• Initialize 𝛼 and r such that

𝛼
(0)
𝑗 = 𝛼0

𝑟
(0)
𝑖𝑗 =

𝑅𝑖𝑗
𝐾∑︀
𝑘=1

𝑅𝑖𝑘

• At each iteration 𝑡 = 1, 2, ...:
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1. For each 𝑗 = 1, ...,𝐾, set 𝛼𝑗 = 𝛼0 +
𝑁∑︀
𝑖=1

𝑛𝑖𝑟
(𝑡−1)
𝑖𝑗 .

2. For each 𝑖 = 1, ..., 𝑁 and 𝑗 = 1, ...,𝐾, set 𝑟(*)𝑖𝑗 = 𝑅𝑖𝑗𝑒
𝜓(𝛼

(𝑡)
𝑗 ).

3. Normalize r over all states for each trajectory 𝑟(𝑡)𝑖𝑗 =
𝑟*𝑖𝑗

𝐾∑︀
𝑘=1

𝑟*𝑖𝑘

This is the state array algorithm implemented in saspt. After inference, we can summarize the posterior using its
mean:

E𝑞(𝜏 ) [𝜏𝑗 ] =
𝛼𝑗 + 𝛼0

𝐾∑︀
𝑘=1

𝛼𝑘 + 𝛼0

E𝑞(Z) [𝑍𝑖𝑗 ] = 𝑟𝑖𝑗

These are the values reported to the user as StateArray.posterior_occs and StateArray.
posterior_assignment_probabilities.

2.4.5 Accounting for defocalization

2.5 API

saspt is an object-oriented Python 3 library. The classes perform discrete roles:

• TrajectoryGroup represents a set of trajectories to be analyzed by state arrays

• Likelihood represents a likelihood function, or physical model for the type of motion. Some examples of like-
lihood functions include Brownian motion with localization error (RBME), various approximations of RBME,
and fractional Brownian motion (FBM). The Likelihood class also defines the grid of state parameters on
which the state array is constructed.

• StateArrayParameters is a struct with the settings for state array inference, including the pixel size, frame
rate, and other imaging parameters.

• StateArray implements the actual state array inference routines.

• StateArrayDataset parallelizes state arrays across multiple target files, and provides some tools and visual-
izations for comparing between experimental conditions.

2.5.1 Note on input format

saspt expects input trajectories as a large table of spatiotemporal coordinates. Each coordinate represents the detection
of a single fluorescent emitter, and is associated with a trajectory index that has been assigned by a tracking algorithm.
An example is shown in the figure below.

The detection table (usually as a CSV) is the format expected by saspt. This format was chosen for simplicity.

saspt comes with an example of the kind of input it expects:

>>> from saspt import sample_detections
>>> detections = sample_detections()
>>> print(detections)

y x frame trajectory
0 575.730202 84.828673 0 13319

(continues on next page)
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Fig. 4: Example of a table of detections. Each dot represents a detection and the dotted lines represent connections
(“jumps”) between detections in the same trajectory. Notice that the trajectories may contain “gaps”, or missing frame
indices, as in the case of trajectory 3.

(continued from previous page)

1 538.416604 485.924667 0 1562
2 107.647631 61.892363 0 363
.. ... ... ... ...
493 366.475688 70.559735 297 14458
494 363.350134 67.585339 298 14458
495 360.006572 70.511980 299 14458

[496 rows x 4 columns]

The XY coordinates in pixels.

These can then be used to construct the objects that saspt expects (see the class hierarchy at API):

>>> from saspt import TrajectoryGroup, StateArrayParameters, StateArray, make_likelihood,
→˓ RBME
>>> settings = dict(likelihood_type = RBME, pixel_size_um = 0.16, frame_interval = 0.
→˓00748)
>>> params = StateArrayParameters(**settings)
>>> trajectories = TrajectoryGroup(detections, **settings)
>>> likelihood = make_likelihood(**settings)
>>> SA = StateArray(trajectories, likelihood, params)
>>> print(params)
StateArrayParameters:
pixel_size_um: 0.16
frame_interval: 0.00748
focal_depth: inf
splitsize: 10
sample_size: 10000
start_frame: 0
max_iter: 200
conc_param: 1.0

>>> print(trajectories)
TrajectoryGroup:

(continues on next page)
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(continued from previous page)

n_detections: 434
n_jumps: 370
n_tracks: 64

>>> print(SA)
StateArray:
likelihood_type : rbme
n_tracks : 64
n_jumps : 370
parameter_names : ('diff_coef', 'loc_error')
shape : (101, 36)

Although this approach is explicit, it is usually easier to use one of the alternative constructors that produce a
StateArray directly from a set of detections:

>>> SA = StateArray.from_detections(detections, **settings)

This executes exactly the same steps implicitly:

>>> print(SA)
StateArray:
likelihood_type : rbme
n_tracks : 64
n_jumps : 370
parameter_names : ('diff_coef', 'loc_error')
shape : (101, 36)

2.5.2 TrajectoryGroup

class saspt.TrajectoryGroup(detections: pandas.DataFrame, pixel_size_um: float, frame_interval: float)
A set of trajectories to be analyzed with state arrays. TrajectoryGroup takes a raw set of trajectories produced by
a tracking algorithm, such as quot, and performs some preprocessing steps to facilitate downstream calculations
with state arrays. These include:

• remove all singlets (trajectories with a single detection), unassigned detections, and detections before an
arbitrary start frame

• split long trajectories into smaller pieces, to minimize the effects of state transitions and tracking errors

• reindex trajectories so that the trajectory indices are contiguous between 0 and n_tracks-1

The TrajectoryGroup object also provides some methods to get some general information about the set of trajec-
tories via the raw_track_statistics and processed_track_statistics attributes. An example:

>>> import numpy as np, pandas as pd
>>> from saspt import TrajectoryGroup

# Simple set of three detections belonging to two trajectories
>>> detections = pd.DataFrame({
... 'frame': [0, 0, 1],
... 'trajectory': [0, 1, 0],
... 'y': [1.1, 2.2, 3.3],
... 'x': [3.3, 2.2., 1.1]

(continues on next page)
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(continued from previous page)

... })

# Imaging parameters
>>> kwargs = dict(pixel_size_um = 0.16, frame_interval = 0.00748)

# Make a TrajectoryGroup with these detections
>>> with TrajectoryGroup(detections, **kwargs) as TG:
... print(TG)
TrajectoryGroup:
n_detections: 2
n_jumps: 1
n_tracks: 1

# Show some information about the raw trajectories
... print(TG.raw_track_statistics)
{'n_tracks': 2, 'n_jumps': 1, 'n_detections': 3, 'mean_track_length': 1.5,
'max_track_length': 2, 'fraction_singlets': 0.5, 'fraction_unassigned': 0.0,
'mean_jumps_per_track': 0.5, 'mean_detections_per_frame': 1.5,
'max_detections_per_frame': 2, 'fraction_of_frames_with_detections': 1.0}

# Show some information about the trajectories after preprocessing
... print(TG.processed_track_statistics)
{'n_tracks': 1, 'n_jumps': 1, 'n_detections': 2, 'mean_track_length': 2.0,
'max_track_length': 2, 'fraction_singlets': 0.0, 'fraction_unassigned': 0.0,
'mean_jumps_per_track': 1.0, 'mean_detections_per_frame': 1.0,
'max_detections_per_frame': 1, 'fraction_of_frames_with_detections': 1.0}

In this example, notice that trajectory 1 only has a single detection. As a result, it is filtered out by the prepro-
cessing step, since it contributes no dynamic information to the result.

__init__(self, detections: pandas.DataFrame, pixel_size_um: float, frame_interval: float, splitsize: int =
DEFAULT_SPLITSIZE, start_frame: int = DEFAULT_START_FRAME)

Default constructor for the TrajectoryGroup object.

Parameters

• detections (pandas.DataFrame) – raw detections/trajectories produced by a tracking
algorithm. Each row of the DataFrame represents a single detections. Must contain at
minimum the following four columns:

1. y: the y-coordinate of the detection in pixels

2. x: the x-coordinate of the detection in pixels

3. frame: the frame index of the detection

4. trajectory: the index of the trajectory to which the detection has been assigned by the
tracking algorithm

• pixel_size_um (float) – size of camera pixels after magnification in microns

• frame_interval (float) – time between frames in seconds

• splitsize (int) – maximum trajectory length (in # of jumps) to consider. Trajectories
longer than splitsize are broken into smaller pieces.

• start_frame (int) – disregard detections before this frame. Useful for restrict analysis
to the later, lower-density parts of an SPT movie.
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Returns
new_instance (TrajectoryGroup)

property n_detections: int

Total number of detections after preprocessing.

property n_jumps: int

Total number of jumps (particle-particle links) after preprocessing.

property n_tracks: int

Total number of trajectories (sequences of detections connected by links) in this dataset.

property jumps: pandas.DataFrame

The set of all jumps (particle-particle links) in these trajectories. Each row corresponds to a single jump.
Contains the following columns:

• frame (saspt.constants.FRAME): frame index of the first detection participating in this jump

• dframes (saspt.constants.DFRAMES): difference in frames between the second and first detection
in this jump. For instance, if dframes == 1, then the jump is a link between detections in subsequent
frames.

• trajectory (saspt.constants.TRACK): index of the trajectory to which the detections in this jump
have been assigned by the tracking algorithm.

• dy (saspt.constants.DY): jump distance in the y-dimension (in microns)

• dx (saspt.constants.DX): jump distance in the x-dimension (in microns)

• dr2 (saspt.constants.DR2): mean squared jump distance in the xy plane. Equivalent to (dy**2
+ dx**2) / dframes.

• jumps_per_track (saspt.constants.JUMPS_PER_TRACK): total number of jumps in the trajectory
to which this jump belongs

Example:

# Simple set of detections belonging to 3 trajectories
>>> detections = pd.DataFrame({
... 'trajectory': [0, 0, 0, 1, 1, 1, 2, 2],
... 'frame': [0, 1, 2, 0, 1, 2, 0, 1],
... 'y': [0., 1., 2., 0., 0., 0., 0., 3.],
... 'x': [0., 0., 0., 0., 2., 4., 0., 0.],
... })

# Imaging parameters
>>> kwargs = dict(pixel_size_um = 1.0, frame_interval = 0.00748)

# Make a TrajectoryGroup
>>> with TrajectoryGroup(detections, **kwargs) as TG:
... print(TG.jumps)

frame dframes trajectory dy dx dr2 jumps_per_track
0 0 1 0 1.0 0.0 1.0 2
1 1 1 0 1.0 0.0 1.0 2
2 0 1 1 0.0 2.0 4.0 2
3 1 1 1 0.0 2.0 4.0 2
4 0 1 2 3.0 0.0 9.0 1
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property jumps_per_track: numpy.ndarray, shape (n_tracks,)

Number of jumps per trajectory

property raw_track_statistics: dict

Summary statistics on the raw set of trajectories (i.e. the set of trajectories passed when constructing this
TrajectoryGroup object).

These include:

• n_tracks: total number of trajectories

• n_jumps: total number of jumps

• n_detections: total number of detections

• mean_track_length: mean trajectory length in frames

• max_track_length: length of the longest trajectory in frames

• fraction_singlets: fraction of trajectories that have length 1 (in other words, they’re just single detec-
tions)

• fraction_unassigned: fraction of detections that are not assigned to any trajectory (have trajectory
index <0). May not be relevant for all tracking algorithms.

• mean_jumps_per_track: mean number of jumps per trajectory

• mean_detections_per_frame: mean number of detections per frame

• max_detections_per_frame: maximum number of detections per frame

• fraction_of_frames_with_detections: fraction of all frames between the minimum and maximum
frame indices that had detections. If 1.0, then all frames contained at least one detected spot.

property processed_track_statistics: dict

Summary statistics on the processed set of trajectories (i.e. the set of trajectories after calling
TrajectoryGroup.preprocess on the raw set of trajectories).

These are exactly the same as the metrics in raw_track_statistics.

class property statistic_names: List[str]

Names of each track summary statistic in TrajectoryGroup.raw_track_statistics and
TrajectoryGroup.processed_track_statistics.

get_track_vectors(self, n: int)→ Tuple[numpy.ndarray]
Return the jumps of every trajectory with n jumps as a numpy.ndarray.

Parameters
n (int) – number of jumps per trajectory

Returns
V (numpy.ndarray), track_indices (numpy.ndarray)

V is a 3D numpy.ndarray with shape (n_tracks, 2, n). V[:,0,:] are the jumps along the y-axis,
while V[:,1,:] are the jumps along the x-axis.

track_indices is a 1D numpy.ndarray with shape (n_tracks,) and gives the index of the trajectory
corresponding to the first axis of V.

Using the example from above:
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# Simple set of detections belonging to 3 trajectories
>>> detections = pd.DataFrame({
... 'trajectory': [0, 0, 0, 1, 1, 1, 2, 2],
... 'frame': [0, 1, 2, 0, 1, 2, 0, 1],
... 'y': [0., 1., 2., 0., 0., 0., 0., 3.],
... 'x': [0., 0., 0., 0., 2., 4., 0., 0.],
})

# Make a TrajectoryGroup
>>> TG = TrajectoryGroup(detections, pixel_size_um=1.0,
... frame_interval=0.00748)
>>> print(TG)
TrajectoryGroup:
n_detections: 8
n_jumps: 5
n_tracks: 3

# Get the jump vectors for all trajectories with 2 jumps
>>> V, track_indices = TG.get_jump_vectors(2)
>>> print(V)
[[[1. 1.]
[0. 0.]]

[[0. 0.]
[2. 2.]]]

>>> print(track_indices)
[0 1]

# Get the jump vectors for all trajectories with 1 jump
>>> V, track_indices = TG.get_jump_vectors(1)
>>> print(V)
[[[3.]
[0.]]]

>>> print(track_indices)
[2]

subsample(self, size: int)→ TrajectoryGroup
Randomly subsample some number of trajectories from this TrajectoryGroup object to produce a new,
smaller TrajectoryGroup object.

Parameters
size (int) – number of trajectories to subsample

Returns
new_instance (TrajectoryGroup)

Example:

# A TrajectoryGroup with 3 trajectories
>>> print(TG)
TrajectoryGroup:
n_detections: 8

(continues on next page)

2.5. API 29



saspt, Release 1.0

(continued from previous page)

n_jumps: 5
n_tracks: 3

# Randomly subsample 2 of these trajectories
>>> TG2 = TG.subsample(2)
>>> print(TG2)
TrajectoryGroup:
n_detections: 5
n_jumps: 3
n_tracks: 2

classmethod from_params(cls, detections: pandas.DataFrame, params: StateArrayParameters)→
TrajectoryGroup

Alternative constructor that uses a StateArrayParameters object rather than a set of keyword arguments.

Parameters

• detections (pandas.DataFrame) – the set of detections to use

• params (StateArrayParameters) – imaging and state array settings

Returns
new_instance (TrajectoryGroup)

Example usage:

>>> from saspt import StateArrayParameters, TrajectoryGroup
>>> params = StateArrayParameters(
... pixel_size_um = 0.16,
... frame_interval = 0.00748
... )
>>> TG = TrajectoryGroup.from_params(some_detections, params)

classmethod from_files(cls, filelist: List[str], **kwargs)→ TrajectoryGroup
Alternative constructor. Create a TrajectoryGroup by loading and concatenating detections directly from
one or more files. The files must be readable by saspt.io.load_detections.

Parameters

• filelist (List[str]) – a list of paths to files containing detections

• kwargs – options to TrajectoryGroup.__init__

Returns
new_instance (TrajectoryGroup)

classmethod preprocess(cls, detections: pandas.DataFrame, splitsize: int = DEFAULT_SPLITSIZE,
start_frame: int = DEFAULT_START_FRAME)→ pandas.DataFrame

Preprocess some raw trajectories for state arrays. This involves:

• remove all singlets (trajectories of length 1), unassigned detections, and detections before start_frame

• break large trajectories into smaller pieces that have at most splitsize jumps

• reindex trajectories so that the set of all trajectory indices is contiguous between 0 and n_tracks-1

For most applications preprocess should not be called directly, and instead you should instantiate a Trajec-
toryGroup using one of the constructors.

Parameters
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• detections (pandas.DataFrame) – indexed by detection. Must be recognize by
saspt.io.is_detections.

• splitsize (int) – maximum trajectory length in jumps

• start_frame (int) – disregard detections recorded before this frame. Useful to restrict
attention to later frames with lower density.

Returns
processed_detections (pandas.DataFrame)

2.5.3 Likelihood

class Likelihood

Abstract base class for likelihood functions, defining properties that all likelihood functions must implement.

Each Likelihood subclass evaluates on a set of trajectories at each of a grid of parameter values.

Instances of Likelihood subclasses should be generated with the saspt.make_likelihood function. For example:

>>> from saspt import make_likelihood, LIKELIHOOD_TYPES

# Imaging parameters
>>> kwargs = dict(
... pixel_size_um = 0.16,
... frame_interval = 0.00748,
... focal_depth = 0.7
... )

# Make a likelihood function for each of the available likelihood types,
# and show the names of the parameters on which the likelihood function
# evaluates
>>> for likelihood_type in LIKELIHOOD_TYPES:
... L = make_likelihood(likelihood_type, **kwargs)
... print(f"Likelihood function '{L.name}' has parameters: {L.parameter_names}")
Likelihood function 'rbme' has parameters: ('diff_coef', 'loc_error')
Likelihood function 'rbme_marginal' has parameters: ('diff_coef',)
Likelihood function 'gamma' has parameters: ('diff_coef',)
Likelihood function 'fbme' has parameters: ('diff_coef', 'hurst_parameter')

abstract property name: str

The name of the likelihood function.

abstract property shape: Tuple[int]

The shape of the parameter grid on which the likelihood function evaluates.

abstract property parameter_names: Tuple[str]

Names of each parameter in the parameter grid.

abstract property parameter_values: Tuple[numpy.ndarray]

Values of each parameter in the parameter grid, given as a tuple of 1D numpy.ndarray. The parameter
grid is the Cartesian product of these arrays.

abstract property parameter_units: Tuple[str]

Physical units for each parameter in the parameter grid.
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abstract __call__(self, trajectories: TrajectoryGroup)→ Tuple[numpy.ndarray]
Evaluate the log likelihood function on each of a set of trajectories at each point on the parameter grid.

Parameters
trajectories (TrajectoryGroup) – the trajectories on which to evaluate

Returns

evaluated_log_likelihood (numpy.ndarray), jumps_per_track (numpy.ndarray)

• evaluated_log_likelihood is the value of the log likelihood function evaluated on each
of the trajectories at each of the parameter values. It is a numpy.ndarray with shape
(*self.shape, trajectories.n_tracks).

• jumps_per_track is the number of jumps in each trajectory. It is a 1D numpy.ndarray
with shape (trajectories.n_tracks,).

Example usage:

>>> from saspt import make_likelihood, RBME, TrajectoryGroup
>>> kwargs = dict(pixel_size_um = 0.16, frame_interval = 0.00748)

# Make an RBMELikelihood function
>>> likelihood = make_likelihood(RBME, **kwargs)

# Show the shape of the parameter grid on which this likelihood
# function is defined
>>> print(likelihood.shape)
(101, 36)

# Show the names of the parameters corresponding to each axis
# on the parameter grid
>>> print(likelihood.parameter_names)
('diff_coef', 'loc_error')

# Load some trajectories (available in saspt/tests/fixtures)
>>> tracks = TrajectoryGroup.from_files(["tests/fixtures/small_tracks_0.csv"],␣
→˓**kwargs)

# Evaluate the log likelihood function on these trajectories
>>> log_L, jumps_per_track = likelihood(tracks)

# The log likelihood contains one element for each trajectory
# and each point in the parameter grid
>>> print(log_L.shape)
(101, 36, 39)

>>> print(jumps_per_track.shape)
(39,)

abstract exp(self, log_L: numpy.ndarray)→ numpy.ndarray
Take the exponent of a log likelihood function produced by Likelihood.__call__() in a numerically
stable way.

This function also normalizes the likelihood function so that the values of the likelihood sum to 1 across
all states in each trajectories.

We can take the exponent of the log likelihood function from the example in __call__, above:
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from saspt import RBME

# Make an RBME likelihood function
>>> likelihood = make_likelihood(RBME, **kwargs)

# Get the normalized likelihood
>>> normed_L = likelihood.exp(log_L)

# Likelihood is normalized across all states for each trajectory
>>> print(normed_L.sum(axis=(0,1)))
array([1., 1., 1., ..., 1., 1., 1.])

Returns
L (numpy.ndarray), shape log_L.shape, the normalized likelihood function for each
trajectory-state assignment

abstract correct_for_defocalization(self, occs: numpy.ndarray, normalize: bool)→ numpy..ndarray
Correct a set of state occupations on this parameter grid for the effect of defocalization.

Parameters

• occs (numpy.ndarray) – state occupations, with shape self.shape

• normalize (bool) – normalize the occupations after applying the correction

Returns
corrected_occs (numpy.ndarray, shape self.shape), corrected state occupations

abstract marginalize_on_diff_coef(self, occs: numpy.ndarray)→ numpy.ndarray
Given a set of state occupations, marginalize over all parameters except the diffusion coefficient.

May raise NotImplementedError if the diffusion coefficient is not a parameter supported by this likeli-
hood function. (Although this is the case for all Likelihood subclasses implemented to date!)

Parameters
occs (numpy.ndarray) – state occupations, shape self.shape

Returns
marginal_occs (numpy.ndarray), marginal state occupations. This will have a lower dimen-
sionality than the input.

For example, suppose we are using the RBME likelihood with a parameter grid of shape (10, 6). Since
the parameters for the RBME likelihood are diff_coef and loc_error, this means that the parameter
grid has 10 distinct diffusion coefficient values and 6 distinct localization error values. After applying
marginalize_on_diff_coef, the output has shape (10,) since the localization error is marginalized out.

In code, this situation is:

>>> import numpy as np
>>> from saspt import make_likelihood, RBME

# Define an RBME likelihood function on a grid of 10 diffusion
# coefficients and 6 localization errors
>>> likelihood = make_likelihood(
... RBME,
... pixel_size_um = 0.16,
... frame_interval = 0.00748,

(continues on next page)

2.5. API 33



saspt, Release 1.0

(continued from previous page)

... focal_depth = 0.7,

... diff_coefs = np.logspace(0.0, 1.0, 10),

... loc_errors = np.linspace(0.0, 0.05, 6)

... )

>>> print(likelihood.shape)
(10, 6)

# Some random state occupations
>>> occs = np.random.dirichlet(np.ones(60)).reshape((10, 6))
>>> print(occs.shape)
(10, 6)

# Marginalize on diffusion coefficient
>>> marginal_occs = likelihood.marginalize_on_diff_coef(occs)
>>> print(marginal_occs.shape)
(10,)

# Plot marginal occupations as a function of diffusion coefficient
# (example)
>>> import matplotlib.pyplot as plt
>>> plt.plot(likelihood.diff_coefs, marginal_occs)
>>> plt.xlabel(f"Diff. coef. ({likelihood.parameter_units[0]})")
>>> plt.ylabel("Marginal occupation")
>>> plt.xscale('log'); plt.show(); plt.close()

RBMELikelihood

class RBMELikelihood(self, pixel_size_um: float, frame_interval: float, focal_depth: float = numpy.inf,
diff_coefs: numpy.ndarray = DEFAULT_DIFF_COEFS, loc_errors: numpy.ndarray =
DEFAULT_LOC_ERRORS, **kwargs)

Subclass of Likelihood for the RBME (regular Brownian motion with localization error) likelihood function.
Probably the most useful likelihood function in saSPT.

Suppose we image an RBME with diffusion coefficient 𝐷, localization error 𝜎, and frame interval ∆𝑡. If there
are 𝑛 jumps in the trajectory, and if x,y ∈ R𝑛 are its jumps along y and x axes respectively, then the likelihood
function is

𝑓(x,y|𝐷,𝜎) =
exp

(︀
− 1

2

(︀
x𝑇Γ−1x + y𝑇Γ−1y

)︀)︀
(2𝜋)

𝑛 det (Γ)

where Γ ∈ R𝑛×𝑛 is the covariance matrix defined by

Γ𝑖𝑗 =

⎧⎪⎨⎪⎩
2(𝐷∆𝑡+ 𝜎2) if 𝑖 = 𝑗

−𝜎2 if |𝑖− 𝑗| = 1

0 otherwise

The parameter grid for RBMELikelihood is a two-dimensional array with the first axis corresponding to the
diffusion coefficient and the second corresponding to localization error. By default, we use a set of logarithmically
spaced diffusion coefficients between 0.01 and 100 𝜇m2 sec−1 and linearly spaced localization errors between 0
and 0.08 𝜇m.

In most situations, localization error is a nuisance parameter. When using the RBME likelihood function with a
state array run, we usually marginalize over the localization error afterward. As a result, the RBME likelihood is
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much more stable from day-to-day and microscope-to-microscope than likelihood functions that do not explicitly
model the error, such as the GammaLikelihood.

See Likelihood for a description of the class properties and methods.

Parameters

• pixel_size_um (float) – camera pixel size after magnification in microns

• frame_interval (float) – time between frames in seconds

• focal_depth (float) – objective focal depth in microns. Used to calculate the effect of
defocalization on apparent state occupations. If numpy.inf, no defocalization corrections are
applied.

• diff_coefs (numpy.ndarray) – the set of diffusion coefficients to use for this likelihood
function’s parameter grid

• loc_errors (numpy.ndarray) – the set of localization errors to use for this likelihood
function’s parameter grid

• kwargs – ignored

RBMEMarginalLikelihood

class RBMEMarginalLikelihood(self, pixel_size_um: float, frame_interval: float, focal_depth: float =
numpy.inf, diff_coefs: numpy.ndarray = DEFAULT_DIFF_COEFS,
loc_errors: numpy.ndarray = DEFAULT_LOC_ERRORS, **kwargs)

The underlying model is identical to RBMELikelihood. However, after evaluating the likelihood function on a
2D parameter grid of diffusion coefficient and localization error, we marginalize over the localization error to
produce a 1D grid over the diffusion coefficient. State arrays then evaluate the posterior distribution over this 1D
grid, rather than the 2D grid in RBMELikelihood.

In short, the order of state inference and marginalization is switched:

RBMELikelihood:

1. Evaluate 2D likelihood function over diffusion coefficient and localization error

2. Infer 2D posterior distribution over diffusion coefficient and localization error

3. Marginalize over localization error to get 1D distribution over diffusion coefficient

RBMEMarginalLikelihood:

1. Evaluate 2D likelihood function over diffusion coefficient and localization error

2. Marginalize over localization error to get 1D likelihood over diffusion coefficient

3. Infer 1D posterior distribution over diffusion coefficient

RBMEMarginalLikelihood generally is inferior to RBMELikelihood and is provided as a point of comparison.

Parameters

• pixel_size_um (float) – camera pixel size after magnification in microns

• frame_interval (float) – time between frames in seconds

• focal_depth (float) – objective focal depth in microns. Used to calculate the effect of
defocalization on apparent state occupations. If numpy.inf, no defocalization corrections are
applied.
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• diff_coefs (numpy.ndarray) – the set of diffusion coefficients to use for this likelihood
function’s parameter grid

• loc_errors (numpy.ndarray) – the set of localization errors to marginalize over when
evaluating the likelihood function

• kwargs – ignored

GammaLikelihood

class GammaLikelihood(self, pixel_size_um: float, frame_interval: float, focal_depth: float=numpy.inf,
diff_coefs: numpy.ndarray=DEFAULT_DIFF_COEFS, loc_error: float=0.035, mode:
str="point, **kwargs)

Subclass of Likelihood for the gamma approximation to the RBM (regular Brownian motion) likelihood function.

The gamma likelihood is obtained from the RBME likelihood by making two approximations:

• the localization error is treated as a constant

• we neglect the off-diagonal terms of the covariance matrix Γ

In this case, the likelihood function simplifies to a gamma distribution. Suppose that x,y ∈ R𝑛 are the x- and
y-jumps of a trajectory with 𝑛 total jumps, and let 𝑆 be the sum of its squared jumps:

𝑆 =

𝑛∑︁
𝑖=1

(︀
𝑥2𝑖 + 𝑦2𝑖

)︀
Then the likelihood function can be expressed

𝑓(𝑆|𝐷,𝜎2) =
𝑆𝑛−1𝑒−𝑆/4𝐷Δ𝑡

Γ(𝑛)(4(𝐷∆𝑡+ 𝜎2))𝑛

Notice that in the term 4(𝐷𝛿𝑡 + 𝜎2), the contributions of diffusion (𝐷∆𝑡) and localization error (𝜎2) cannot
be distinguished without introducing the assumption that localization is constant. This is only approximately
true, since the number of photons collectd per particle, the axial distance from the focus, and the motion of
the particle will all influence localization error, creating variation within a single SPT movie. In particular, the
gamma likelihood performs tolerably well when 𝐷∆𝑡≫ 𝜎2, but is highly inaccurate when 𝐷∆𝑡 ∼ 𝜎2.

The GammaLikelihood parameter grid is a simple 1D array of diffusion coefficients. By default, these are loga-
rithmically spaced between 0.01 and 100 𝜇m2 sec−1.

See Likelihood for a description of the class properties and methods.

Parameters

• pixel_size_um (float) – camera pixel size after magnification in microns

• frame_interval (float) – time between frames in seconds

• focal_depth (float) – objective focal depth in microns. Used to calculate the effect of
defocalization on apparent state occupations. If numpy.inf, no defocalization corrections are
applied.

• diff_coefs (numpy.ndarray) – the set of diffusion coefficients to use for this likelihood
function’s parameter grid

• loc_error (float) – the 1D localization error (assumed constant), expressed as the root
variance in microns

• mode (str) – deprecated; ignored

• kwargs – ignored
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FBMELikelihood

class FBMELikelihood(self, pixel_size_um: float, frame_interval: float, focal_depth: float, diff_coefs:
numpy.ndarray = DEFAULT_DIFF_COEFS, hurst_pars: numpy.ndarray =
DEFAULT_HURST_PARS, loc_error: float = 0.035, **kwargs)

Likelihood function for fractional Brownian motion with localization error (FBME). This is similar to RBME
but allows for temporal correlations (either positive or negative) between jumps in the same trajectory, depending
on the value of the Hurst parameter:

• if 𝐻 < 1
2 , jumps in the same trajectory are anticorrelated (the trajectory tends to return to where it came

from)

• if 𝐻 = 1
2 , the motion is Brownian (no correlation between the jumps)

• if𝐻 > 1
2 , jumps in the same trajectory are positively correlated (the trajectory tends to keep moving in the

same direction)

In particular, if x,y ∈ R𝑛 are the x- and y components of the jumps of an FBME with 𝑛 jumps, diffusion
coefficient 𝐷, Hurst parameter 𝐻 , and localization error 𝜎, then the likelihood function is defined

𝑓(x,y|𝐷,𝐻, 𝜎2) =
exp

(︀
− 1

2

(︀
x𝑇Γ−1x + y𝑇Γ−1y

)︀)︀
(2𝜋)

𝑛 det (Γ)

where Γ is the covariance matrix:

Γ𝑖𝑗 =

⎧⎪⎨⎪⎩
𝐷∆𝑡

(︀
|𝑖− 𝑗 + 1|2𝐻 + |𝑖− 𝑗 − 1|2𝐻 − 2|𝑖− 𝑗|2𝐻

)︀
+ 2𝜎2 if 𝑖 = 𝑗

𝐷∆𝑡
(︀
|𝑖− 𝑗 + 1|2𝐻 + |𝑖− 𝑗 − 1|2𝐻 − 2|𝑖− 𝑗|2𝐻

)︀
− 𝜎2 if |𝑖− 𝑗| = 1

𝐷∆𝑡
(︀
|𝑖− 𝑗 + 1|2𝐻 + |𝑖− 𝑗 − 1|2𝐻 − 2|𝑖− 𝑗|2𝐻

)︀
otherwise

The parameter grid for FBMELikelihood is a 2D grid over diffusion coefficient and Hurst parameter, with local-
ization error treated as a constant.

Parameters

• pixel_size_um (float) – camera pixel size after magnification in microns

• frame_interval (float) – time between frames in seconds

• focal_depth (float) – objective focal depth in microns. Used to calculate the effect of
defocalization on apparent state occupations. If numpy.inf, no defocalization corrections are
applied.

• diff_coefs (numpy.ndarray) – the set of diffusion coefficients to use for this likelihood
function’s parameter grid

• hurst_pars (numpy.ndarray) – the set of Hurst parameters to use for this likelihood func-
tion’s parameter grid

• loc_error (float) – the 1D localization error (assumed constant), expressed as a root
variance in microns

• kwargs – ignored
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2.5.4 StateArrayParameters

class saspt.StateArrayParameters(pixel_size_um: float, frame_interval: float)

__init__(pixel_size_um: float, frame_interval: float, focal_depth: float = np.inf, splitsize: int =
DEFAULT_SPLITSIZE, sample_size: int = DEFAULT_SAMPLE_SIZE, start_frame: int =
DEFAULT_START_FRAME, max_iter: int = DEFAULT_MAX_ITER, conc_param: float =
DEFAULT_CONC_PARAM, progress_bar: bool = False, num_workers: int = 1)

Parameters

• pixel_size_um (float) – camera pixel size after magnification in microns

• frame_interval (float) – delay between frames in seconds

• splitsize (int) – maximum length of trajectories in frames. Trajectories longer than
splitsize are split into smaller pieces.

• sample_size (int) – maximum number of trajectories to consider per state array. SPT
experiments that exceed this number are subsampled.

• start_frame (int) – disregard detections before this frame. Useful to restrict analysis to
later frames with lower detection density.

• max_iter (int) – maximum number of iterations of variational Bayesian inference to run
when inferring the posterior distribution

• conc_param (float) – concentration parameter of the Dirichlet prior over state occupa-
tions. A conc_param of 1.0 is a naive prior; values less than 1.0 favor more states and
values greater than 1.0 favor fewer states. Default value is 1.0.

• progress_bar (bool) – show progress and be a little verbose, where relevant

• num_workers (int) – number of parallel processes to use. Recommended not to set this
higher than the number of CPUs.

Returns
new instance of StateArrayParameters

property parameters: Tuple[str]

Names of all parameters that directly impact the state array algorithm. Does not include parameters that
determine implementation or display, such as progress_bar or num_workers

property units: dict

Physical units in which each parameter is defined

__eq__(self, other: StateArrayParameters)→ bool
Check for equivalence of two StateArrayParameter objects

__repr__(self )→ str
String representation of this StateArrayParameters object
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2.5.5 StateArray

class StateArray(self, trajectories: TrajectoryGroup, likelihood: :py:class:`Likelihood`, params:
StateArrayParameters)

Central class for running state array inference on one SPT experiment. Encapsulates routines to infer the occu-
pation of each point on a parameter grid, given a set of trajectories.

Specifically, suppose that X is a set of 𝑁 trajectories (using whatever format is most convenient).

We select a grid of 𝐾 distinct states (represented, in this case, by the Likelihood object). Each state is associ-
ated with some state parameters that define its characteristics. As an example, the RBME likelihood uses two
parameters for each state: a diffusion coefficient and a localization error. We use 𝜃𝑗 to indicate the tuple of all
state parameters for state 𝑗.

Let Z ∈ {0, 1}𝑁×𝐾 be the trajectory-state assignment matrix, so that

𝑍𝑖𝑗 =

{︃
1 if trajectory 𝑖 is assigned to state 𝑗
0 otherwise

Further, let 𝜏 ∈ R𝐾 be the vector of state occupations, so that
𝐾∑︀
𝑗=1

𝜏𝑗 = 1.

Notice that, given a particular state occupation vector 𝜏 , the probability to see the assignments Z is

𝑝(Z|𝜏 ) =

𝑁∏︁
𝑖=1

𝐾∏︁
𝑗=1

𝜏
𝑍𝑖𝑗

𝑗

Similarly, the probability to see trajectories X given the assignment matrix Z is

𝑝(X|Z) =

𝑁∏︁
𝑖=1

𝐾∏︁
𝑗=1

𝑓(𝑋𝑖|𝜃𝑗)𝑍𝑖𝑗

where 𝑓(𝑋𝑖|𝜃𝑗) is the likelihood function for state 𝑗 evaluated on trajectory 𝑖.

We seek the posterior distribution 𝑝(Z, 𝜏 |X). The StateArray class uses a variational Bayesian approach that
approximates the posterior distribution as the product of two factors:

𝑝(Z, 𝜏 |X) ≈ 𝑞(Z)𝑞(𝜏 )

The factor 𝑞(Z) is given by the attribute posterior_assignment_probabilities, while the factor 𝑞(𝜏 ) is
given by the attribute posterior_occs.

For the prior over the trajectory-state assignments, we take a uniform distribution over all states for each trajectory.
For the prior over the state occupations, we take:

𝜏 ∼ Dirichlet (𝛼 · 1)

Here, 1 is a 𝐾-vector of ones and 𝛼 is the concentration parameter. Larger values of 𝛼 require more data in
order to depart from uniformity. The default value of 𝛼 (saspt.constants.DEFAULT_CONC_PARAM) is 1.0.
Reasonable values are between 0.5 and 1.0.

Additionally, the StateArray object implements an alternative (“naive”) estimator for the state occupations. This
is defined as

𝜏𝑗 ∝ 𝜂−1
𝑗

𝑁∑︁
𝑖=1

𝑛𝑖𝑟𝑖𝑗

𝑟𝑖𝑗 =
𝑓(𝑋𝑖|𝜃𝑗)
𝐾∑︀
𝑘=1

𝑓(𝑋𝑖|𝜃𝑘)
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where 𝑛𝑖 is the number of jumps in trajectory 𝑖 and 𝜂𝑗 is a correction for defocalization of state 𝑗. The naive
estimator is considerably less precise than the posterior occupations, but has the virtue of speed and simplicity.

Parameters

• trajectories (TrajectoryGroup) – a set of trajectories to run this state array on

• likelihood (Likelihood) – the likelihood function to use

• params (StateArrayParameters) – parameters governing the state array algorithm, in-
cluding the concentration parameter, maximum number of iterations, and so on

likelihood: Likelihood

The underlying likelihood function for this StateArray

trajectories: TrajectoryGroup

The underlying set of trajectories for this StateArray

classmethod from_detections(cls, detections: pandas.DataFrame, likelihood_type: str, **kwargs)
Alternative constructor; make a StateArray directly from a set of detections. This avoids the user needing
to explicitly construct the Likelihood and StateArrayParameters objects.

Parameters

• detections (pandas.DataFrame) – input set of detections, with the columns
frame (saspt.constants.FRAME), trajectory (saspt.constants.TRACK), y (saspt.
constants.PY), and x (saspt.constants.PX)

• likelihood_type (str) – the type of likelihood function to use; an element of
saspt.constants.LIKELIHOOD_TYPES

• kwargs – additional keyword arguments to the StateArrayParameters and Likelihood sub-
class. Must include pixel_size_um and frame_interval.

Returns
new instance of StateArray

property n_tracks: int

Number of trajectories in this SPT experiment after preprocessing. See TrajectoryGroup.

property n_jumps: int

Number of jumps (particle-particle links) in this SPT experiment after preprocessing. See TrajectoryGroup.

property n_detections: int

Number of detections in this SPT experiment after preprocessing. See TrajectoryGroup.

property shape: Tuple[int]

Shape of the parameter grid on which this state array is defined. Alias for StateArray.likelihood.shape.

property likelihood_type: str

Name of the likelihood function. Alias for StateArray.likelihood.name.

property parameter_names: Tuple[str]

Names of the parameters corresponding to each axis in the parameter grid. Alias for StateAr-
ray.likelihood.parameter_names

property parameter_values: Tuple[numpy.ndarray]

Values of the parameters corresponding to each axis in the parameter grid. Alias for StateAr-
ray.likelihood.parameter_values.

40 Chapter 2. What doesn’t saSPT do?



saspt, Release 1.0

property n_states: int

Total number of states in the parameter grid; equivalent to the product of the dimensions of the parameter
grid

property jumps_per_track: numpy.ndarray

1D numpy.ndarray of shape (n_tracks,); number of jumps in each trajectory

property naive_assignment_probabilities: numpy.ndarray

numpy.ndarray of shape (*self.shape, n_tracks); the “naive” probabilities for each trajectory-state assign-
ment. These are just normalized likelihoods, and provide a useful counterpoint to the posterior trajectory-
state assignments.

The naive probability to assign trajectory 𝑖 to state 𝑗 in a model with 𝐾 total states is

𝑟𝑖𝑗 =
𝑓(𝑋𝑖|𝜃𝑗)
𝐾∑︀
𝑘=1

𝑓(𝑋𝑖|𝜃𝑘)

where 𝑓(𝑋𝑖|𝜃𝑗) is the likelihood function evaluated on trajectory 𝑋𝑖 with state parameter(s) 𝜃𝑗 .

Example:

>>> from saspt import sample_detections, StateArray, RBME

# Make a StateArray
>>> SA = StateArray.from_detections(
... sample_detections(),
... likelihood_type = RBME,
... pixel_size_um = 0.16,
... frame_interval = 0.00748
... )
>>> print(f"Shape of parameter grid: {SA.shape}")
Shape of parameter grid: (101, 36)

>>> print(f"Number of trajectories: {SA.n_tracks}")
Number of trajectories: 64

# Get the probabilities for each trajectory-state assignment
>>> naive_assign_probs = SA.naive_assignment_probabilities
>>> print(f"Shape of assignment probability matrix: {naive_assign_probs.shape}")
Shape of assignment probability matrix: (101, 36, 64)

# Example: probability to assign trajectory 10 to state (0, 24)
>>> p = naive_assign_probs[0, 24, 10]
>>> print(f"Naive probability to assign track 10 to state (0, 24): {p}")
Naive probability to assign track 10 to state (0, 24): 0.0018974905182505026

# Assignment probabilities are normalized over all states for each track
>>> print(naive_assign_probs.sum(axis=(0,1)))
[1. 1. 1. ... 1. 1. 1.]

property posterior_assignment_probabilities: numpy.ndarray

numpy.ndarray of shape (*self.shape, n_tracks); the posterior probabilities for each trajectory-state assign-
ment.
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In math, if we have 𝑁 trajectories and 𝐾 states, then the posterior distribution over trajectory-state assign-
ments is

𝑝(Z|r) =

𝑁∏︁
𝑖=1

𝐾∏︁
𝑗=1

𝑟
𝑍𝑖𝑗

𝑖𝑗

where Z ∈ {0, 1}𝑁×𝐾 is a matrix of trajectory-state assignments and r ∈ R𝑁×𝐾 is
posterior_assignment_probabilities.

The distribution is normalized over all trajectories:
𝐾∑︀
𝑗=1

𝑟𝑖𝑗 = 1 for any 𝑖.

property prior_dirichlet_param: numpy.ndarray

Shape self.shape; the parameter to the Dirichlet prior distribution over state occupations.

saSPT uses uniform priors by default.

In math:

𝜏 ∼ Dirichlet (𝛼0)

where 𝜏 are the state occupations and 𝛼0 is prior_dirichlet_param .

property posterior_dirichlet_param: numpy.ndarray

Shape self.shape; the parameter to the Dirichlet posterior distribution over state occupations.

In math:

𝜏 |X ∼ Dirichlet (𝛼 + 𝛼0)

where 𝜏 are the state occupations, 𝛼 is posterior_dirichlet_param , and 𝛼0 is
prior_dirichlet_param .

property prior_occs: numpy.ndarray

Shape self.shape; mean occupations of each state in the parameter grid under the prior distribution. Since
saSPT uses uniform priors, all values are equal to 1.0/self.n_states (1/𝐾).

𝜏 (prior) = E [𝜏 ] =

∫︁
𝜏 𝑝(𝜏 ) 𝑑𝜏 =

1

𝐾

where 𝑝(𝜏 ) is the prior distribution over the state occupations and 𝐾 is the number of states.

property naive_occs: numpy.ndarray

Shape self.shape; naive estimate for the occupations of each state in the parameter grid.

These are obtained from the naive trajectory-state assignment probabilities by normalizing a weighted sum
across all trajectories:

𝜏 (naive)
𝑗 ∝ 𝜂−1

𝑗

𝑁∑︁
𝑖=1

𝑛𝑖𝑟𝑖𝑗

where 𝑛𝑖 is the number of jumps in trajectory 𝑖, 𝑟𝑖𝑗 is the naive probability to assign trajectory 𝑖 to state 𝑗,
and 𝜂𝑗 is a potential correction factor for defocalization.

The naive state occupations are less precise than the posterior occupations, but also require fewer trajectories
to estimate. As a result, they provide a useful “quick and dirty” estimate for state occupations, and also a
sanity check when comparing against the posterior occupations.
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property posterior_occs: numpy.ndarray

Shape self.shape; mean occupations of each state in the parameter grid under the posterior distribution:

𝜏 (posterior) = E [𝜏 |X] =

∫︁
𝜏 𝑝(𝜏 |X) 𝑑𝜏

property posterior_occs_dataframe: pandas.DataFrame

Representation of posterior_occs as a pandas.DataFrame. Each row corresponds to a single state (element
in the parameter grid), and the columns include the parameter values, naive occupation, and posterior
occupation of that state.

Example:

>>> from saspt import sample_detections, StateArray, RBME

# Make a toy StateArray
>>> SA = StateArray.from_detections(sample_detections(),
... likelihood_type=RBME, pixel_size_um = 0.16,
... frame_interval = 0.00748, focal_depth = 0.7)

# Get the posterior distribution as a pandas.DataFrame
>>> posterior_df = SA.posterior_occs_dataframe
>>> print(posterior_df)

diff_coef loc_error naive_occupation mean_posterior_occupation
0 0.01 0.000 0.000002 0.000002
1 0.01 0.002 0.000003 0.000002
2 0.01 0.004 0.000004 0.000003
3 0.01 0.006 0.000005 0.000004
4 0.01 0.008 0.000009 0.000007
... ... ... ... ...
3631 100.00 0.062 0.000007 0.000007
3632 100.00 0.064 0.000007 0.000007
3633 100.00 0.066 0.000007 0.000007
3634 100.00 0.068 0.000007 0.000007
3635 100.00 0.070 0.000007 0.000007

As an example calculation, we can estimate the fraction of particles with diffusion coefficients in the range
1.0 to 10.0 µm2/sec under the posterior distribution:

>>> diff_coefs_in_range = np.logical_and(
... posterior_diff['diff_coef'] >= 1.0,
... posterior_diff['diff_coef'] < 10.0)
>>> x = posterior_df.loc[diff_coefs_in_range, 'mean_posterior_occupation'].sum()
>>> print(f"Fraction of particles with diffusion coefficients between 0 and 10:
→˓{x}")
0.15984985148415815

And just for fun, we can compare this with the estimate from the naive occupations:

>>> x = posterior_df.loc[diff_coefs_in_range, 'naive_occupation'].sum()
>>> print(f"Fraction of particles with diffusion coefficients between 0 and 10:
→˓{x}")
0.15884454681112886
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In this case, the naive and posterior estimates agree quite closely. We could get exactly the same result by
doing

>>> in_range = np.logical_and(SA.diff_coefs>=1.0, SA.diff_coefs<10.0)

# Fraction of particles with diffusion coefficients in this range,
# under posterior mean occupations
>>> print(SA.posterior_occs[in_range,:].sum())
0.15984985148415815

# Fraction of particles with diffusion coefficients in this range,
# under the naive occupations
>>> print(SA.naive_occs[in_range,:].sum())
0.15884454681112886

property diff_coefs: numpy.ndarray

1D numpy.ndarray, the set of diffusion coefficients on which this state array is defined, corresponding to
one of the axes in the parameter grid.

Not all likelihood functions may use diffusion coefficient as a parameter. In those cases, diff_coefs is an
empty numpy.ndarray.

marginalize_on_diff_coef:

Alias for Likelihood.marginalize_on_diff_coef.

plot_occupations(self, out_png: str, **kwargs)
Plot the naive and posterior occupations. The exact plot will depend on likelihood_type. For the RBME
likelihood, three panels are shown:

• the upper panel shows the naive state occupations

• the middle panel shows the posterior state occupations

• the lower panel shows the posterior state occupations marginalized on diffusion coefficient
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Parameters

• out_png (str) – save path for this plot

• kwargs – additional kwargs to the plotting function

plot_assignment_probabilities(self, out_png: str, **kwargs)
Plot the naive posterior trajectory-state assignments, marginalized on diffusion coefficient. Useful for judg-
ing heterogeneity between trajectories.

Parameters

• out_png (str) – save path for this plot

• kwargs – additional kwargs to the plotting function

plot_temporal_assignment_probabilities(self, out_png: str, frame_block_size: int = None,
**kwargs)

Plot the posterior diffusion coefficient as a function of frame. Useful to judge whether the posterior distri-
bution is stationary. This may not be the case if, for instance, there are lots of tracking errors in the earlier,
denser part of the SPT movie.

The color map is proportional to the number of jumps in each frame block by default. To disable this, set
the normalize parameter to True.
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Parameters

• out_png (str) – save path for this plot

• frame_block_size (int) – number of frames per temporal bin. If None, attempts to find
an appropriate block size for the SPT movie.

• kwargs – additional kwargs to the plotting function

plot_spatial_assignment_probabilities(self, out_png: str, **kwargs)
Plot the mean posterior diffusion coefficient as a function of space. Currently experimental and subject to
change.

Parameters

• out_png (str) – save path for this plot

• kwargs – additional kwargs to the plotting function

2.5.6 StateArrayDataset

class StateArrayDataset(self, paths: pandas.DataFrame, likelihood: Likelihood, params:
StateArrayParameters, path_col: str, condition_col: str = None, **kwargs)

Implements routines to run state arrays at the dataset level. Parallelizes inference across multiple files and pro-
vides visualization methods to compare different experimental conditions.

The structure of the SPT dataset is specified with the paths argument. This is a pandas.DataFrame that en-
codes the path and experimental condition for all files in the dataset. Only two columns in this DataFrame are
recognized:

• path_col (required): encodes the path to each SPT trajectory file

• condition_col (optional): encodes the experimental condition to which that file belongs

If the DataFrame contains other columns, they are ignored.

An example is provided by the file experiment_conditions.csv under the examples folder in the saSPT repo. The
path_col is filepath and condition_col is condition:

$ cat experiment_conditions.csv | head
filepath,condition
u2os_ht_nls_7.48ms/region_0_7ms_trajs.csv,HaloTag-NLS
u2os_ht_nls_7.48ms/region_10_7ms_trajs.csv,HaloTag-NLS
...

Running from the saspt/examples directory, we can construct a StateArrayDataset as follows:

import pandas as pd
from saspt import StateArrayDataset, RBME

# Load the paths DataFrame
paths = pd.read_csv("experiment_conditions.csv")

# Settings for state array inference
settings = dict(

likelihood_type = RBME, # type of likelihood function to use
pixel_size_um = 0.16, # camera pixel size in microns
frame_interval = 0.00748, # frame interval in seconds

(continues on next page)
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(continued from previous page)

focal_depth = 0.7, # objective focal depth in microns
path_col = 'filepath', # column in *paths* encoding file path
condition_col='condition',# column in *paths* encoding

# experimental condition
num_workers = 4, # parallel processes to use
progress_bar = True, # show progress

)

# Make a StateArrayDataset with these settings
with StateArrayDataset.from_kwargs(paths, **settings) as SAD:

print(SAD)

The output of this script is:

StateArrayDataset:
likelihood_type : rbme
shape : (101, 36)
n_files : 22
path_col : filepath
condition_col : condition
conditions : ['HaloTag-NLS' 'RARA-HaloTag']

StateArrayDataset implements several methods to get information about a dataset. Continuing with the example
above,

# Make a StateArrayDataset with these settings
with StateArrayDataset.from_kwargs(paths, **settings) as SAD:

# Save some statistics on each SPT file, including the number
# of trajectories, trajectory length, etc.
SAD.raw_track_statistics.to_csv("raw_track_statistics.csv", index=False)

# Save the posterior state occupations to a file
SAD.marginal_posterior_occs_dataframe.to_csv(

"marginal_posterior_distribution.csv", index=False)

# Make some plots comparing the naive state occupations across all
# files in this dataset
SAD.naive_heat_map("naive_heat_map.png")
SAD.naive_line_plot("naive_line_plot.png")

# Make some plots comparing the posterior state occupations across all
# files in this dataset
SAD.posterior_heat_map("posterior_heat_map.png")
SAD.posterior_line_plot("posterior_line_plot.png")

# Do some kind of specific calculation; for example, calculate the
# fraction of particles with diffusion coefficients less than 1.0
# in each file
print(SAD.marginal_posterior_occs[:,SAD.diff_coefs<1.0].sum(axis=1))
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Warning: An important parameter when constructing the StateArrayDataset is num_workers, the number
of parallel processes. This should not be set higher than the number of CPUs you have access to. Otherwise
you’ll suffer performance drops.

Parameters

• paths (pandas.DataFrame) –

• likelihood_type (str) –

• path_col (str) –

• condition_col (str) –

• pixel_size_um (float) –

• frame_interval (float) –

• focal_depth (float) –

• num_workers (int) –

• progress_bar (bool) –

classmethod from_kwargs(cls, paths: pandas.DataFrame, likelihood_type: str, path_col: str,
condition_col: str = None, **kwargs)

Parameters

• paths (pandas.DataFrame) –

• likelihood_type (str) –

• path_col (str) –

• condition_col (str) –

• pixel_size_um (float) –

• frame_interval (float) –

• focal_depth (float) –

• num_workers (int) –

• progress_bar (bool) –

Returns
new instance of StateArrayDataset

likelihood: Likelihood

The likelihood function used by all of the state arrays in this StateArrayDataset.

property n_files: int

Total number of files in this StateArrayDataset.

property shape: Tuple[int]

property likelihood_type: str

Name of the likelihood function; equivalent to StateArrayDataset.likelihood.name
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property n_diff_coefs: int

Number of distinct diffusion coefficients in the parameter grid corresponding to this Likelihood function.

If self.likelihood does not use diffusion coefficient as a parameter, is 0.

property jumps_per_file: numpy.ndarray

Shape (n_files,), the number of observed jumps in each file (after preprocessing).

property raw_track_statistics: pandas.DataFrame

Raw trajectory statistics for this dataset. Each row of the DataFrame corresponds to one file, and each
column to an attribute of that file.

Continuing with the previous example,

>>> with StateArray(paths, **settings) as SAD:
... track_stats = SAD.raw_track_statistics

>>> print(track_stats.columns)
Index(['n_tracks', 'n_jumps', 'n_detections', 'mean_track_length',
'max_track_length', 'fraction_singlets', 'fraction_unassigned',
'mean_jumps_per_track', 'mean_detections_per_frame',
'max_detections_per_frame', 'fraction_of_frames_with_detections',
'filepath', 'condition'],

dtype='object')

>>> print(track_stats[['mean_track_length', 'fraction_singlets', 'condition']])
mean_track_length fraction_singlets condition

0 1.636783 0.839129 HaloTag-NLS
1 2.075513 0.666734 HaloTag-NLS
2 1.784457 0.746812 HaloTag-NLS
3 1.986613 0.675709 HaloTag-NLS
4 2.004172 0.698274 HaloTag-NLS
.. ... ... ...
17 3.881071 0.571429 RARA-HaloTag
18 3.826364 0.557824 RARA-HaloTag
19 3.423219 0.591547 RARA-HaloTag
20 3.682189 0.536682 RARA-HaloTag
21 3.520319 0.595750 RARA-HaloTag

[22 rows x 3 columns]

Notice that the trajectories from the HaloTag-NLS conditions are shorter and more likely to be singlets than
the trajectories in the RARA-HaloTag condition.

property processed_track_statistics: pandas.DataFrame

Trajectory statistics for this dataset after preprocessing. Each row of the DataFrame corresponds to one
file, and each column to an attribute of that file.

This is identical in form to raw_track_statistics.

property marginal_naive_occs: numpy.ndarray

Shape (n_files, n_diff_coefs), naive state occupations for each file marginalized on diffusion coefficient.

property marginal_posterior_occs: numpy.ndarray

Shape (n_files, n_diff_coefs), posterior state occupations for each file marginalized on diffusion coefficient.
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property marginal_posterior_occs_dataframe: pandas.DataFrame

pandas.DataFrame representation of marginal_posterior_occs. Each row corresponds to a single state
in a single file, so that the total number of rows is equal to n_files * n_diff_coefs.

Continuing the example from above,

>>> SAD = StateArrayDataset.from_kwargs(paths, **settings)
>>> diff_coefs = SAD.diff_coefs
>>> df = SAD.marginal_posterior_occs_dataframe

# Calculate the estimated fraction of trajectories with diffusion
# coefficients below 0.1 µm2/sec for all files in this dataset
>>> print(df.loc[df['diff_coef'] < 0.1].groupby('filepath')['posterior_
→˓occupation'].sum())
filepath
u2os_ht_nls_7.48ms/region_0_7ms_trajs.csv 0.173923
u2os_ht_nls_7.48ms/region_10_7ms_trajs.csv 0.067899
u2os_ht_nls_7.48ms/region_1_7ms_trajs.csv 0.165322
u2os_ht_nls_7.48ms/region_2_7ms_trajs.csv 0.020263
u2os_ht_nls_7.48ms/region_3_7ms_trajs.csv 0.101379

...
u2os_rara_ht_7.48ms/region_5_7ms_trajs.csv 0.364910
u2os_rara_ht_7.48ms/region_6_7ms_trajs.csv 0.430909
u2os_rara_ht_7.48ms/region_7_7ms_trajs.csv 0.426619
u2os_rara_ht_7.48ms/region_8_7ms_trajs.csv 0.350441
u2os_rara_ht_7.48ms/region_9_7ms_trajs.csv 0.553296
Name: posterior_occupation, Length: 22, dtype: float64

clear(self )
Clear all cached attributes.

apply_by(self, col: str, func: Callable, is_variadic: bool = False, **kwargs)
Apply a function in parallel to groups of files identified by a common value in self.paths[col]. Essentially
equivalent to a parallel version of self.paths.groupby(col)[self.path_col].apply(func).

func should have the signature func(paths: List[str], **kwargs) if is_variadic == False, or func(*paths:
str, **kwargs) if is_variadic == True.

Parameters

• col (str) – a column in self.paths to group files by

• func (Callable) – function to apply to each file group

• is_variadic (bool) – func is a variadic function

• kwargs – additional keyword arguments to func

Returns
result (list), group_names (List[str])

infer_posterior_by_condition(self, col: str, normalize: bool = False)
Group files by common values of self.paths[col] and infer the marginal posterior occupations for each file
group.

Parameters

• col (str) – column in self.paths to group by

• normalize (bool) – normalize the posterior occupations over all states for each file
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Returns
posterior_occs (numpy.ndarray), group_names (List[str]). posterior_occs is a 2D array of
shape (n_groups, n_diff_coefs) with the marginal posterior occupations for each file group,
and group_names is the names of each group.

calc_marginal_naive_occs(self, *track_paths: str)→ numpy.ndarray:
Calculate the naive state occupations (marginalized on diffusion coefficient) for one or more files. If mul-
tiple files are passed, runs on the concatenation of the detections across files.

If you want to infer the marginal naive occupations for all of the files in this StateArrayDataset, use StateAr-
rayDataset.marginal_naive_occs instead.

Parameters
track_paths (str) – full paths to one or more files with detections

Returns
naive_occs (numpy.ndarray), 1D array of shape (n_diff_coefs,), the marginal naive state oc-
cupations

calc_marginal_posterior_occs(self, *track_paths: str)→ numpy.ndarray:
Calculate the posterior state occupations (marginalized on diffusion coefficient) for one or more files. If
multiple files are passed, runs on the concatenation of the detections across files.

If you want to infer the marginal naive occupations for all of the files in this StateArrayDataset, use StateAr-
rayDataset.marginal_naive_occs instead.

Parameters
track_paths (str) – full paths to one or more files with detections

Returns
naive_occs (numpy.ndarray), 1D array of shape (n_diff_coefs,), the marginal posterior state
occupations

naive_heat_map(self, out_png: str, normalize: bool = True, order_by_size: bool = True, **kwargs)
Naive state occupations, marginalized on diffusion coefficient, shown as a heat map. Groups by condition.

With normalize = True:

Parameters

• out_png (str) – save path for this plot
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• normalize (bool) – normalize the state occupations for each file in the dataset. If False,
the intensity for each file is proportional to the number of jumps observed in that SPT
experiment.

• order_by_size (bool) – within each condition group, order the files by decreasing num-
ber of observed jumps.

• kwargs – additional kwargs to the plotting function

naive_line_plot(self, out_png: str, **kwargs)
Naive state occupations, marginalized on diffusion coefficient, shown as a line plot. Groups by condition.

Parameters

• out_png (str) – save path for this plot

• kwargs – additional kwargs to the plotting function

posterior_heat_map(self, out_png: str, normalize: bool = True, order_by_size: bool = True, **kwargs)
Posterior mean state occupations, marginalized on diffusion coefficient, shown as a heat map. Groups by
condition.

52 Chapter 2. What doesn’t saSPT do?



saspt, Release 1.0

Parameters

• out_png (str) – save path for this plot

• normalize (bool) – normalize the state occupations for each file in the dataset. If False,
the intensity for each file is proportional to the number of jumps observed in that SPT
experiment.

• order_by_size (bool) – within each condition group, order the files by decreasing num-
ber of observed jumps.

• kwargs – additional kwargs to the plotting function

posterior_line_plot(self, out_png: str, **kwargs)
Posterior mean state occupations, marginalized on diffusion coefficient, shown as a line plot. Groups by
condition.

Parameters

• out_png (str) – save path for this plot

• kwargs – additional kwargs to the plotting function

2.5.7 File reading

saspt.io.is_detections(df: pandas.DataFrame)→ bool
Determine whether a panda.DataFrame is recognized as a viable set of SPT detections by the rest of saSPT. In
particular, it must contain the following four columns:

• frame (saspt.constants.FRAME): frame index for this detection

• trajectory (saspt.constants.TRACK): trajectory index for this detection

• x (saspt.constants.PX): position of the detection in pixels

• y (saspt.constants.PY): position of the detection in pixels

Example:
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>>> import pandas as pd
>>> from saspt.constants import FRAME, TRACK, PY, PX
>>> from saspt.io import is_detections
>>> print(is_detections(pd.DataFrame(index=[], columns=[FRAME, TRACK, PY, PX],␣
→˓dtype=object)))
True
>>> print(is_detections(pd.DataFrame(index=[], columns=[FRAME, PY, PX],␣
→˓dtype=object)))
False

Parameters
df (pandas.DataFrame) – each row corresponding to a detection

Returns
bool

saspt.io.load_detections_from_file(filepath: str)→ pandas.DataFrame
Load detections from a file in one of the currently recognized formats.

At the moment, saSPT only recognizes a single file format for trajectories: a CSV where each row corresponds
to a detection and the columns contain at minimum frame, trajectory, x, and y.

Parameters
filepath (str) – path to the file containing detections

Returns
detections (pandas.DataFrame), the set of detections

saspt.load_detections(*filepaths: str)→ pandas.DataFrame
Load detections from one or more files and concatenate into a single pandas.DataFrame. Increments trajectory
indices, so that indices between detections from different files do not collide.

Example (using some files from the saSPT repo):

>>> from saspt.io import load_detections
>>> detections = load_detections(
... 'tests/fixtures/small_tracks_0.csv',
... 'tests/fixtures/small_tracks_1.csv'
... )
>>> print(detections)

trajectory ... dataframe_idx
0 0 ... 0
1 0 ... 0
2 0 ... 0
3 1 ... 0
4 1 ... 0
.. ... ... ...
449 107 ... 1
450 107 ... 1
451 107 ... 1
452 107 ... 1
453 107 ... 1

[454 rows x 6 columns]
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Parameters
filepaths (str) – one or more paths to files containing detections. Must be in a format recog-
nized by saspt.io.load_detections_from_file.

Returns
detections (pandas.DataFrame), indexed by detection

saspt.io.empty_detections()→ pandas.DataFrame
Return an empty set of detections. Useful mostly for tests.

Returns
empty_detections (pandas.DataFrame)

saspt.io.sample_detections()→ pandas.DataFrame
Return a small, simple set of detections. Useful for illustrations and quick demos, especially in these docs.

>>> from saspt import sample_detections
>>> detections = sample_detections()
>>> print(detections)

y x frame trajectory
0 575.730202 84.828673 0 13319
1 538.416604 485.924667 0 1562
2 107.647631 61.892363 0 363
3 151.893969 63.246361 0 992
4 538.737277 485.856905 1 1562
.. ... ... ... ...
491 365.801274 70.689108 296 14458
492 409.236744 10.312949 296 14375
493 366.475688 70.559735 297 14458
494 363.350134 67.585339 298 14458
495 360.006572 70.511980 299 14458

[496 rows x 4 columns]

Returns
pandas.DataFrame with columns frame, trajectory, y, and x

saspt.io.concat_detections(*detections: pandas.DataFrame)→ pandas.DataFrame
Concatenate multiple detection DataFrames while incrementing trajectory indices to prevent index collisions.

Parameters
detections (pandas.DataFrame) – one or more DataFrames containing detections

Returns
concatenated_detections (pandas.DataFrame)
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2.5.8 Utilities

saspt.utils.track_length(detections: pandas.DataFrame)→ pandas.DataFrame
Add a new column to a detection-level DataFrame with the length of each trajectory in frames.

Example:

>>> from saspt import sample_detections
>>> detections = sample_detections()
>>> from saspt.utils import track_length

# Calculate length of each trajectory in frames
>>> detections = track_length(detections)
>>> print(detections)

y x frame trajectory track_length
0 575.730202 84.828673 0 13319 247
1 538.416604 485.924667 0 1562 13
2 107.647631 61.892363 0 363 3
3 151.893969 63.246361 0 992 8
4 538.737277 485.856905 1 1562 13
.. ... ... ... ... ...
491 365.801274 70.689108 296 14458 7
492 409.236744 10.312949 296 14375 1
493 366.475688 70.559735 297 14458 7
494 363.350134 67.585339 298 14458 7
495 360.006572 70.511980 299 14458 7

[496 rows x 5 columns]

# All detections in each trajectory have the same track length
>>> print(detections.groupby('trajectory')['track_length'].nunique())
trajectory
363 1
413 1
439 1
542 1
580 1

..
14174 1
14324 1
14360 1
14375 1
14458 1
Name: track_length, Length: 100, dtype: int64

# Mean trajectory length is ~5 frames
>>> print(detections.groupby('trajectory')['track_length'].first().mean())
4.96

Parameters
detections (pandas.DataFrame) –

Returns
pandas.DataFrame, the input DataFrame with a new column track_length (saspt.constants.
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TRACK_LENGTH)

saspt.utils.assign_index_in_track(detections: pandas.DataFrame)→ pandas.DataFrame
Given a set of detections, determine the index of each detection in its respective trajectory.

Sorts the input.

Parameters
detections (pandas.DataFrame) – input set of detections

Returns
pandas.DataFrame, input with the index_in_track column

saspt.utils.cartesian_product(*arrays: numpy.ndarray)→ numpy.ndarray
Take the Cartesian product of multiple 1D arrays.

Parameters
arrays (numpy.ndarray) – one or more 1D arrays

Returns
product (numpy.ndarray), 2D array. Each corresponds to a unique combination of the elements
of arrays.

2.6 FAQS

2.6.1 Q. Does saspt provide a way to do tracking?

saspt only analyzes the output of a tracking algorithm; it doesn’t produce the trajectories themselves. The general
workflow is:

1. Acquire some raw SPT movies

2. Use a tracking algorithm to produce trajectories from the SPT movie

3. Feed the trajectories into saspt (or whatever your favorite analysis tool is)

There are lots of good tracking algorithms out there. In the sample data included in the saspt repo, we used an in-house
tracking tool with a graphic user interface (quot). But - you know - we’re biased.

Other popular options are TrackMate, the multiple-target tracing algorithm, or Sbalzerini’s hill climbing algorithm.
There are new tracking algorithms every day; use Google to see for yourself.

2.6.2 Q. Why doesn’t saspt support input format X?

Because a table of detections is probably the simplest format that exists to describe trajectories, so we added it first.
We’re happy to expand support for additional formats (within reason) - let us know with a GitHub request.
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2.6.3 Q. Why are the default diffusion coefficients log-spaced?

As the diffusion coefficient increases, our estimate of it becomes much more error-prone. This makes it difficult for
humans to compare the occupations of states with widely varying diffusion coefficients. By plotting on a log scale, we
minimize these perceptual differences so that humans can accurately compare states across the full range of biologically
observed diffusion coefficients.

To demonstrate this effect, consider the likelihood function for the jumps of a 2D Brownian motion with no localization
error, diffusion coefficient𝐷, frame interval ∆𝑡, and 𝑛 total jumps. The maximum likelihood estimator for the diffusion
coefficient is the mean-squared displacement (MSD):

�̂� =
1

4𝑛∆𝑡

𝑛∑︁
𝑗=1

(∆𝑥2𝑗 + ∆𝑦2𝑗 )

where (∆𝑥𝑗 ,∆𝑦𝑗) is the 𝑗th jump in the trajectory.

We can get the “best-case” error in this estimate using the Cramer-Rao lower bound (CRLB), which provides the
minimum variance our estimator �̂�:

Var(�̂�) ≥ CRLB(�̂�) =
𝐷2

𝑛

So the error in the estimate of 𝐷 actually increases as the square of 𝐷. If we throw in localization error (represented
as the 1D spatial measurement variance, 𝜎2) and neglect the off-diagonal terms in the covariance matrix, we get the
approximation

Var(�̂�) ≥ CRLB(�̂�) ≈ (𝐷∆𝑡+ 𝜎2)2

𝑛∆𝑡2

Notice that this makes it even harder to estimate the diffusion coefficient, especially when 𝐷∆𝑡 < 𝜎2.

2.6.4 Q. How does saspt estimate the posterior occupations, given the posterior
distribution?

saspt always uses the posterior mean. If 𝛼 is the parameter to the posterior Dirichlet distribution over state occupa-
tions, then the posterior mean 𝜏 is simply the normalized Dirichlet parameter:

𝜏 ∼ Dirichlet (𝛼)

E [𝜏 |𝛼] =
1∑︀𝐾

𝑗=1 𝛼𝑗

⎡⎣𝛼1

...
𝛼𝐾

⎤⎦
We prefer the posterior mean to max a posteriori (MAP) or other estimators because it is very conservative and mini-
mizes the occurrence of spurious features.

2.6.5 Q. I want to measure the fraction of particles in a particular state. How do I do
that?

If you know the range of diffusion coefficients you’re interested in, you can directly integrate the mean posterior occu-
pations. Say we want the fraction of particles with diffusion coefficients between 1 and 10 𝜇m2/sec:

>>> occupations = SA.posterior_occs_dataframe
>>> in_range = (occupations['diff_coef'] >= 1.0) & (occupations['diff_coef'] < 10.0)
>>> print(occupations.loc[in_range, 'mean_posterior_occupation'].sum())

That being said, saspt does not provide any way to determine the endpoints for this range, and that is up to you or the
methods you develop.
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2.6.6 Q. What is defocalization?

Examining the movie in the section Background, you may notice that the particles are constantly wandering into and
out of focus. The faster they move, the faster they escape the microscope’s focus.

As it turns out, this behavior (termed “defocalization”) has a dangerous side effect. If we want to know the state
occupations - the fraction of proteins in a particular state - we may be tempted to report the fraction of observed
trajectories in that state. The problem is that particles in fast states contribute many short trajectories, because they
can wander in and out of focus multiple times before bleaching. By contrast, particles in slow states produce a few long
trajectories; they don’t move fast enough to reenter the focal volume before bleaching.

As a result, a mixture of equal parts fast and slow particles does not produce equal parts fast and slow trajectories.

Fig. 5: Illustration of the defocalization problem. Particles inside the focus (green circles) are recorded by the micro-
scope; particles outside the focus (red circles) are not recorded. Particles that traverse the focus multiple times are
“fragmented” into multiple short trajectories.

Defocalization is the reason why the “MSD histogram” method - one of the most popular approaches to analyze protein
tracking data - yields inaccurate results when applied to 2D imaging. A more detailed discussion can be found in the
papers of Mazza and Hansen and Woringer.

saspt avoids the state estimation problem by computing state occupations in terms of jumps rather than trajecto-
ries. Additionally, an analytical correction factor (analogous to the empirical correction factor from Hansen and
Woringer) can be applied to the data by passing the focal_depth parameter when constructing a StateArray or
StateArrayDataset object.

2.7 References

The source code for saspt is publicly available under an MIT license.

If you use state arrays in your research, please cite the state array paper (currently in preprint):

Alec Heckert, Liza Dahal, Robert Tijan, Xavier Darzacq (2022) Recovering mixtures of fast-diffusing states from
short single-particle trajectories eLife 11:e70169 (https://doi.org/10.7554/eLife.70169)

The trajectories used in the examples for the saspt repo were generated using the quot tool at Robert Tjian and Xavier
Darzacq’s laboratory at University of California, Berkeley. Dyes used in these experiments were generously provided
by the laboratory of Luke Lavis at Janelia Research Campus.
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